如图e是矩形abcd的边cb
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:36:24
由矩形ABCD∽矩形EABF可得AEAB=ABBC,设AE=x,则AD=BC=2x,又AB=1,∴x1=12x,x2=12,x=22,∴BC=2x=2×22=2,∴S矩形ABCD=BC×AB=2×1=
证明:延长BF,交DA的延长线于点M,连接BD,∵四边形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,FB=FM,∵在矩形ABC
证明:延长DF与CE的延长线相交于点G因为四边形ABCD是矩形所以CA=BDAD=BCAD平行BC所以角FAD=角FEG角FDA=角G因为F是AE的中点所以AF=EF所以三角形AFD和三角形EFG全等
过F点做AD的平行线交AB于G点则有FG垂直于AB三角形AFG全等于三角形BFG(全等条件:F中点所以G也是重点AG=FG都有一直角和公共边FG边角边)所以有AF=BF角FAB=角FBA又得角FAD=
连接CF因为AC=CE,F是AE中点,所以CF⊥AE,BF为直角三角形AEB斜边中线,所以AF=FB,AD=BC,易证FD=FC所以三角形AFD全等于三角形BFC,所以角AFD=角BFC,所以角DFB
(1)证明:连接BD交AC于O,连接FO,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD=2AO=2CO,AO=CO,∵F为AE中点,∴FO=12CE,∵AC=CE,∴FO=12AC=12BD
设BC长X因为矩形ABCD和矩形EABF相似则X/10=10/(0.5X),解得X=10√2所以矩形ABCD面积=10X=100√2=141.42
证明:连接BD交AC于O点,连接BF.方法一:∵AC=CE,三角形ABE为直角三角形,F为斜边AE上的中点∴CF⊥AE,且BF=AF,∠FBA=∠FAB又∵∠ABD=∠BAC∴∠FBA+∠ABD=∠F
∵AE⊥AF∴∠EAF=90°∵∠BAD=90°∴∠BAE=∠DAF∴AB=AD,∠D=∠ABE∴△ABE≌△ADF∴AE=AF,即△AEF是等腰直角三角形设DF=k,则AD=3k∴AF=√10k∵△
∵四边形ABCD是矩形,且AD=2,CD=1,∴BC=AD=2,AB=CD=1,∠ABC=∠C=90°,AB∥DC.∴EB=AB=1. 在Rt△ABE中,AE=AB2+BE2=2;在Rt△D
证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,∴AC=BD,∴EF=12AC,EF∥AC,GH=12AC,GH∥AC同理,FG=12BD,FG∥BD,EH=
因为E,F分别是矩形ABCD一组对边AD,CB的中点所以BF=1/2BC因为矩形AEFB∽矩形ABCD所以AB:BC=BF:AB即AB×AB=BC×BF设BC=2,则BF=1/2BC=1AB×AB=2
证明:过F做FG‖AD,连接CF.在直角梯形ADCE中,∵FG‖AD,F为AE的中点∴G点为CD的中点,且FG⊥CD∴FD=FC,∠FDC=∠FCD(垂直平分线的性质)又∵∠ADC=∠BCD=90°(
1因为矩形,所以AD平行CE,所以∠CED=∠EDA,∠BAD=90°,因为FG=DG,所以AG=1/2DF=DG=FG,所以∠EDA=∠DAG,又因为∠CED=∠EDA,所以∠CED=∠DAG2因为
∵矩形ABCD∽矩形EABF∴AB/EA=AD/EF又∵E.F分别为矩形ABCD的边AD、BC的中点,AB=1∴EA=1/2AD,EF=AB=1∴AD=√2(-√2舍去)∴S矩形ABCD=1*√2=√
(1)证明:在Rt△AEF和Rt△DEC中,∵EF⊥CE,∴∠FEC=90°.∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD. &n
根据题意,可知AE=FB=AD/2=BC/2∵AEFB∽ABCD∴AE/AB=AB/BCAB^2=AE·BC=(BC/2)·BC=BC^2/2(AB/BC)^2=1/2AB/BC=√2/2答:AB:B
因为矩形AEFB∽矩形ABCD,所以对应边成比例.即:AB:BC=BF:AB=(BC/2):AB所以:AB:BC=(BC/2):AB得出AB^2=(BC^2)/2两边开根号:AB:BC=(根号2)/2
AB:BC的值为二分之根号二.