如图o为rt三角形acd斜边ac上一点,以o为圆心,oa为半径的圆df=1则de

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:01:41
如图o为rt三角形acd斜边ac上一点,以o为圆心,oa为半径的圆df=1则de
如图,在Rt三角形ABC中,CD是斜边AB上的中线,sinB=3/4,则角ACD= 精确到1’

设AC=3因为sinB=3/4所以AB=4在直角三角形ABC中,因为CD为中线根据直角三角形斜边的中线等于斜边的一半得到CD=1/2AB=2则在△ACD中AC=3AD=1/2AB=2CD=2根据余弦定

如图,在rt三角形abc中,cd是斜边ab上的中线,de是三角形acd的中线,则de平行bc,理由

cd是斜边ab上的中线,de是三角形acd的中线可得AD/AB=1/2AE/AC=1/2还有一个公共角A所以三角形ABC与三角形AD相似.所以角AED=角ACB=90°所以ED⊥ACBD垂直AC所以D

如图,已知圆o是Rt三角形abc的内切圆,斜边ab与圆o相切于点d,ao的延长线交bc于点e.求证:ad×ae=ao×a

已知,斜边ab与圆o相切于点d,可得:od⊥ab,而且,ac⊥bc,∠bae=∠cae,可得:ad/ao=cos∠bae=cos∠cae=ac/ae,所以,ad×ae=ao×ac.

如图,在RT三角形ABC中,角ACB=90度,AC=5,BC=12,AD是三角形的角平分线,过A,C,D三点的圆O与斜边

证明:【1】第一步:∠ACD=90°→AD是圆O的直径→∠AED=90°第二步:AD是三角形的角平分线→∠DAE=∠DAC又∵AD=AD∴△ACD≌△AED(AAS)→AC=AE【2】由勾股定理可求得

已知三角形abc是腰长为一的等腰直角三角形,以rt三角形abc的斜边ab为直角边画完第二个等腰rt三角形acd在ert三

根号2的2012次方再答:抱歉是2013次方再答:看到没,再问:在三角形abc中角c等于90度哎比起分别为角a角b角c所对的边路a等于b等于e则三角形的baby系的面积是多少?再答:画个图吧!再问:在

1.如图1,以Rt三角形ABC的直角边AB为直径的圆O与斜边AC交与点D,点E是BC的中点.求证:DE是圆O的切线

1、证明:连接DO、BD.∵AB为直径∴角ADB=90°(直径所对的圆周角为90°)∵角ADB+角CDB=180°∴角CDB=180°-角ADB=90°角EDB标角1角EBD标角2角OBD标角3角OD

如图,Rt三角形ABC中,CD是斜边上的高,三角形ACD和三角形CBD都和三角形ABC相似吗?证明

在ΔABC与ΔACD中,∠ACB=∠ADC=90°,∠A=∠A,∴ΔABC∽ΔACD,∴AC/AB=AD/AC,∴AC^2=AD*AB.在ΔABC与ΔCBD中,∠ACB=∠CDB=90°,∠B=∠B,

如图,在Rt△ABC中,CD是斜边AB上的高,CE是斜边上的中线,ACD=B,ACD =ECB ECB =A -EC

如图,在Rt△ABC中,CD是斜边AB上的高,CE是斜边上的中线;求证:∠ACD=∠B,∠ACD=∠ECB,∠ECB=∠A-∠ECD证明:①∵△ABC是直角三角形,∠ACB=90°,∴∠B=90°-∠

如图,已知ΔABC是边长为1的等腰直角三角形,以RtΔABC的斜边AC为直角边,画第二个等腰RtΔACD,再以RtΔAC

(1)已知ΔABC是直角边长为1的等腰直角三角形,由勾股定理可知它的斜边AC=√2同理:再以RtΔABC的斜边AC为直角边,画第二个等腰RtΔACD,    &

已知:等腰RT三角形ABC中,角A=90度,如图8-1,E为AB上任意一点,以CE为斜边等腰R

以CE为斜边作等腰直角三角形CDE连接AD则有AD平行于BC若将等腰直角三角形ABC改为正三角形ABCE为AB边上任一点三角形CDE为正三角形连接AD上述结论还成立吗

如图,在Rt三角形ABC中,斜边BC=12,角C=30,D为BC的中点,三角形ABD的外接圆圆O与AC交于F点,过A作圆

证明:(1)在Rt△ABC中,∠BAC=90°,∠C=30°,D为BC的中点,∴∠ABD=60°,AD=BD=DC.∴△ABD为等边三角形.∴O点为△ABD的中心(内心,外心,垂心三心合-).连接OA

如图,Rt三角形ABC中,D为斜边AB上一点,求证:DA=DC

有图没有再问:再答:再答:没事再问:“因为三角形ABC是Rt三角形“可改写成“因为在Rt三角形中“再答:按照你们现在上的课程来讲是要那么写,你就按你说的写也行,

如图在RT三角形ABC中,CD是斜边AB上的高,求证三角形ACD相似三角形ABC

用角角边.因为角A加角ACD等于九十度角A加角B等于九十度所以角ACD等于B又因为角A等于角A且AC等于AC所以根据定理可得相似证明完毕.自己在写点步骤吧连贯一下.

全等三角形练习题1.已知:如图,在Rt三角形ABC和Rt三角形BAD中,AB为斜边,AC=BD,BC、AD 相交于点E.

(1)在三角形ACB与三角形BDA中AC=BD角CAB=角DBAAB=BA所以三角形ACB全等于三角形BDA.(SAS)所以角ABC=角DAB.因为角CAB=角CAD+角DAB角DBA=角DBE+角E

如图,已知点O为Rt三角形ABC斜边AC上一点,以O为圆心,OA长为半径的圆O与BC相切于点E,与AC相交于点D,连接A

(1)在三角形AOE中,因为OA=OE,所以角OAE=角OEA,因为BC与圆O相切,所以OE垂直于BC,则角BAE=角OEA,所以角BAE=角OAE,则AE平分角CAB(2)没图,角1在哪

如图,已知等腰Rt△ABC的直角边长为l,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的

∵△ABC是边长为1的等腰直角三角形,∴S△ABC=12×1×1=12=21-2;AC=12+12=2,AD=(2)2+(2)2=2…,∴S△ACD=12×2×2=1=22-2;S△ADE=12×2×