如图①,过圆o上一点p做pa,pb,若pa=pb
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:34:10
(1)(2)问都是作垂线</p1,作OC垂直于AP,OD垂直于BP,用等弦所对的弦心距相等,说明OC=OD,所以PO平分角APB.(到角两边距离相等的点在这个角的平分线上)2也是一样的,做垂线3
辅助线已作如图先证三角形ABP相似于三角形CAP:公共角P角ABP=角CAB+角ACB角CAP=角OAP+角CAO且三角形OAC等腰,从而角ACB=角CAO因为角CAB=角OAP=90°所以三角形AB
(1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等; OC=OA, OD=OD;三角
证明:∵PA是圆O的切线∴∠PAB=∠C∵PA‖BC∴∠PAB=∠ABC∴∠ABC=∠C∴AB=AC
∠P=70°,所以∠AOB=110度,DA,DC,EB,EC分别是圆的切线,根据切线长定理,∠DOE=1/2∠AOB=55度DC=DA,EC=EB,所以周长为PD+PE+DE=PA+PB=2PA=10
弦相等,则弦心距相等,∴PO平分∠APB(到角两边相等的点在这个角的平分线上).
由AP·PB,联想到相交弦定理,于是延长CP交⊙O于D,于是有PC·PD=PA·PB.又根据条件OP⊥PC.易证得PC=PD问题得证.
当C不与A,B两点重合时,AP
∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8
⑴弦相等,则弦心距相等,∴PO平分∠APB(到角两边相等的点在这个角的平分线上).⑵道理同上.⑶设弦PA交圆于A、C,PB交圆于B、D,∵PA=PB,∴∠PAB=∠PBA,又∠PAB=∠PDC,∠PB
PB=PA=12由切线性质知,EA=EM,FB=FM所以三角形PEF的周长=PE+PF+EF=PE+PF+EM+FM=(PE+EA)+(PF+FB)=PA+PB=24
连接AO和BO,PO=PO,∠PAO=∠PBO=90°,AO=BO,证明△OAP与△OBP全等.r=2根号3,最大值为6+2根号3再问:这是什么啊???能竖着写吗。我多给你分。谢谢了。
∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=
这是作业本上的题目把1):作oc垂直AP于C,作OD垂直PB于D.∵PA=PB∴OC=OD(在同圆或等圆中,相等的弦的圆心距相等)∴∠APO=∠BPO(到角两边距离相等的点在角平分线上)(2):作OE
连接OA、OB∵PA、PB分别切⊙O于点A、B,∴OA⊥PA、OB⊥PB,∵∠P=58°,∴∠AOB=122°,∴∠C=61°.
(1)连接AO、BO、PO,则OA⊥AP,OB⊥BP.在RT△AOP中,AO=8cm,PO=16cm,所以,∠APO=30°.同理,∠BPO=30°.因此,∠APB=60°.(2)连接OM、OE、OF
1.连接AO交BC于E由题意得PA垂直于AOPA平行于BC所以BC垂直于AO又因为OB=OC所以三角形OBE全等于三角形OCEBE=CEBC垂直于AO 所以三角形AB
(1)连接OB,则△PAB是直角三角形,所以PO的平方=PB的平方+OB的平方所以(m+2)^2=2^2+4^2,解得,m=2+2根5.(2)存在这样的点C,使△PBC为等边三角形,点c也是切点,且角
(1)连接OB,则可以知道OB垂直PB,因为OB=2,OP=OA+AP=2+m,所以勾股定理得,2^2+n^2=(2+m)^2,若n=4,则m=2*根号5-2(2)假设存在,则BC应该在PB与OB之间
1连接AD你就知道角PAB=ADB=ACB所以AB=AC2PA²=PB*PD算出直径=15△PAB∽△PDA得到AD=2ABAD²+AB²=15²算出AB=3根