如图△abc为等腰△,点o是底边bc的中点,腰ab与圆o

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:01:02
如图△abc为等腰△,点o是底边bc的中点,腰ab与圆o
如图①,△ABC是等腰直角三角形,∠ACB=90°,O为AB的中点,点D为AB边上任意一点,以D为顶点作等腰直角△DEF

(1)、(2)都超简单,直接讲(3)连接OG、OF、OD,做OM⊥CD于M,做ON⊥BG于N,∵△BOF全等于△COD,∴S△BOF=S△COD,CD=BF,∴OM=ON,所以GO平分∠BGO,∵∠B

如图,已知△ABC和△ADE都是等腰直角三角形,点M为EC边中点,求证:△BMD为等腰直角三角形.

把直线AE、BE、AD逆时针旋转90°,则A旋转到C点,B、E对应点分别为B'、E'.△ABE全等于△CBE',BD=BD'.连接MD',下面证明D、M、D'在一条直线上.因为EB、CD'都垂直于BE

如图,已知△ABC和△ADE都是等腰直角三角形,点M为EC中点,证△BMD为等腰直角三角形

证明:过点C作CF∥ED,与DM的延长线交于点F,连接BF,可证得△MDE≌△MFC,∴DM=FM,DE=FC,∴AD=ED=FC,作AN⊥EC于点N,由已知∠ADE=90°,∠ABC=90°,可证得

如图,在等腰△ABC中,AC=BC=10,以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC于F,交CB的延长线于

(1)证明:连接OD,∵AC=BC,∴∠ABC=∠BAC,∵OD=OB,∴∠ABC=∠ODB,∴∠BAC=∠BDO,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∵OD为半径,∴直线EF是⊙O的切线;(2

如图,小正方形的边长为1,试说明△ABC是等腰直角三角形

图在哪?显示出来再说再问:http://zhidao.baidu.com/question/2265160706585222748.html

如图,小正方形的边长为1,试说明△ABC是等腰直角三角形.

证明:∵AC2=12+22=5,BC2=12+22=5,AB2=12+32=10,∴AC2+BC2=AB2=10,AC=BC=5,∴△ABC是等腰直角三角形.

如图,△ABC为等腰直角三角形

应是“求证:BE是AD的一半"延长BE交AC的延长线于点F,则有AE垂直平分BF,得BE=EF,BF=2BE角CAD=角DBE=22.5度,AC=BC,角ACB=角BCF=90度所以三角形ACD全等于

如图,以等腰△ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE⊥AC,垂足为E.

(Ⅰ)证明:连接OD、AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵△ABC为等腰三角形,∴DB=DC,而OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE

如图 等腰直角三角形ABC 角BAC=90 0是斜边BC中点,连接OA,以点O为旋转中心,将△ABC顺时针旋转α

AB与B'C'交于点F,BC与A'C'交于G,AB与A'B'交于HOB=OC,角B=角C,角BOF=角C'OG△BOF≌△C'OG,BF=C'G,OF=OG,又OB'=OC,所以B'F=CG,角B'=

如图,在等腰Rt△ABC中,∠A=90°,AC=9,点O在AC上,且AO=2,点P是AB上一动点,连接OP将线段OP绕O

过点D作DE⊥AC于E,则∠DOE+∠AOP=90°,∠DOE+∠ODE=90°,∴∠ODE=∠AOP,又∵OD=OP,∠DEO=∠OAP=90°,∴△DEO≌△OAP,∴DE=OA=CE=2,∴AP

如图,已知以等腰△ABC的一腰AB为直径的圆O交另一腰于点E,交底边BC于点D,则BC与DE有怎样的数量关系?证

BC=2DE证明:连接AD,则∠ADB=90度(直径所对的角)因为AB=AC,则AD除了是等腰三角形的高,还是它的中线BD=DC连接BE,则∠AEB=90度(直径所对的角)在RT△EBC中,D为斜边的

如图,已知等腰△ABC,AC=BC=10,AB=12,以BC为直径作⊙O交AB点D,交AC于点G,DF⊥AC,垂足为F,

(1)证明:连接CD,OD,∵BC是⊙O直径,∴∠CDB=90°,即CD⊥AB,∵AC=BC,∴BD=AD,∵BO=CO,∴OD∥AC,∵EF⊥AC,∴EF⊥OD,∵OD为半径,∴EF是⊙O的切线;(

如图,在等腰△ABC中,AC=BC,以BC为直径作⊙O交AB于点D,DF⊥AC,垂足为F,FD的延长线交CB的延长线于点

证明:连接OD,如右图所示,∵AC=BC,∴∠A=∠ABC,∵OD=OB,∴∠OBD=∠ODB,∴∠ODB=∠A,∴OD∥AC,又∵DF⊥AC,∴∠CFD=90°,∴∠ODE=90°,∴OD⊥EF,∴

如图,o是等腰Rt△ABC外一点,试作出Rt△ABC绕O点按顺时针或逆时针旋转180°后的图像

图形自己画,锻炼自己.方法:连接AO并延长至点A',使AO=A'O连接BO并延长至点B',使BO=B'O连接CO并延长至点C',使CO=C'O连接C'O,B'O,A'O.将AO并延长至点A',使AO=

如图,等腰△ABC,AB=AC,以AB为直径作圆O分别交AC,BC于D,E两点,过B点的切线交OE的延长线于点F,连结F

联结OD∴AO=BO=DO=EO∴∠ABC=∠OEB∠BAC=∠ADO∵AB=AC∴∠ABC=∠C∴∠OEB=∠COE//AC∴∠BOE=∠BAC∠EOD=∠ADO∵∠BAC=∠ADO∴∠BOE=∠E

已知如图,点A,P,B在⊙O上,∠APB=90°,PC平分∠APB,交⊙O于点C.求证:△ABC为等腰直角三角形.

证明:由∠APB=90°得AB为直径,∴∠ACB=90°.∵PC平分∠APB,交⊙O于点C.∴∠CPA=∠CPB.由同圆或等圆中圆周角相等则弦也相等,∴AC=BC,∴△ABC为等腰直角三角形.

如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O,∠EBO=∠DCO且BE=CD.求证:△ABC是等腰

证明:在△EBO和△DCO中,∠EBO=∠DCO∠EOB=∠DOCBE=CD,∴△EBO≌△DCO(AAS),∴OB=OC,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∴∠ABC

如图,在等腰△ABC中,AB=AC,D是AB上的动点,作等腰△EDC∽△ABC.

证明:(1)∵△EDC∽△ABC(1分)∴BCDC=ACEC,∠ECD=∠ACB(2分)∴∠ACE=∠BCD(1分)∴△ACE∽△BCD(2分);(2)根据(1)得∠EAC=∠B(1分)∵AB=AC(