如图△abc为等腰△,点o是底边bc的中点,腰ab与圆o
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:01:02
(1)、(2)都超简单,直接讲(3)连接OG、OF、OD,做OM⊥CD于M,做ON⊥BG于N,∵△BOF全等于△COD,∴S△BOF=S△COD,CD=BF,∴OM=ON,所以GO平分∠BGO,∵∠B
把直线AE、BE、AD逆时针旋转90°,则A旋转到C点,B、E对应点分别为B'、E'.△ABE全等于△CBE',BD=BD'.连接MD',下面证明D、M、D'在一条直线上.因为EB、CD'都垂直于BE
证明:过点C作CF∥ED,与DM的延长线交于点F,连接BF,可证得△MDE≌△MFC,∴DM=FM,DE=FC,∴AD=ED=FC,作AN⊥EC于点N,由已知∠ADE=90°,∠ABC=90°,可证得
(1)证明:连接OD,∵AC=BC,∴∠ABC=∠BAC,∵OD=OB,∴∠ABC=∠ODB,∴∠BAC=∠BDO,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∵OD为半径,∴直线EF是⊙O的切线;(2
图在哪?显示出来再说再问:http://zhidao.baidu.com/question/2265160706585222748.html
证明:∵AC2=12+22=5,BC2=12+22=5,AB2=12+32=10,∴AC2+BC2=AB2=10,AC=BC=5,∴△ABC是等腰直角三角形.
应是“求证:BE是AD的一半"延长BE交AC的延长线于点F,则有AE垂直平分BF,得BE=EF,BF=2BE角CAD=角DBE=22.5度,AC=BC,角ACB=角BCF=90度所以三角形ACD全等于
根号2的2n-1次幂
(Ⅰ)证明:连接OD、AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵△ABC为等腰三角形,∴DB=DC,而OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE
AB与B'C'交于点F,BC与A'C'交于G,AB与A'B'交于HOB=OC,角B=角C,角BOF=角C'OG△BOF≌△C'OG,BF=C'G,OF=OG,又OB'=OC,所以B'F=CG,角B'=
过点D作DE⊥AC于E,则∠DOE+∠AOP=90°,∠DOE+∠ODE=90°,∴∠ODE=∠AOP,又∵OD=OP,∠DEO=∠OAP=90°,∴△DEO≌△OAP,∴DE=OA=CE=2,∴AP
BC=2DE证明:连接AD,则∠ADB=90度(直径所对的角)因为AB=AC,则AD除了是等腰三角形的高,还是它的中线BD=DC连接BE,则∠AEB=90度(直径所对的角)在RT△EBC中,D为斜边的
(1)证明:连接CD,OD,∵BC是⊙O直径,∴∠CDB=90°,即CD⊥AB,∵AC=BC,∴BD=AD,∵BO=CO,∴OD∥AC,∵EF⊥AC,∴EF⊥OD,∵OD为半径,∴EF是⊙O的切线;(
证明:连接OD,如右图所示,∵AC=BC,∴∠A=∠ABC,∵OD=OB,∴∠OBD=∠ODB,∴∠ODB=∠A,∴OD∥AC,又∵DF⊥AC,∴∠CFD=90°,∴∠ODE=90°,∴OD⊥EF,∴
图形自己画,锻炼自己.方法:连接AO并延长至点A',使AO=A'O连接BO并延长至点B',使BO=B'O连接CO并延长至点C',使CO=C'O连接C'O,B'O,A'O.将AO并延长至点A',使AO=
PQ最小值:2倍根号2-1再问:过程呢
联结OD∴AO=BO=DO=EO∴∠ABC=∠OEB∠BAC=∠ADO∵AB=AC∴∠ABC=∠C∴∠OEB=∠COE//AC∴∠BOE=∠BAC∠EOD=∠ADO∵∠BAC=∠ADO∴∠BOE=∠E
证明:由∠APB=90°得AB为直径,∴∠ACB=90°.∵PC平分∠APB,交⊙O于点C.∴∠CPA=∠CPB.由同圆或等圆中圆周角相等则弦也相等,∴AC=BC,∴△ABC为等腰直角三角形.
证明:在△EBO和△DCO中,∠EBO=∠DCO∠EOB=∠DOCBE=CD,∴△EBO≌△DCO(AAS),∴OB=OC,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∴∠ABC
证明:(1)∵△EDC∽△ABC(1分)∴BCDC=ACEC,∠ECD=∠ACB(2分)∴∠ACE=∠BCD(1分)∴△ACE∽△BCD(2分);(2)根据(1)得∠EAC=∠B(1分)∵AB=AC(