如图△ABC内接于圆O,过点B作圆O的切线DE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:50:21
(1)证明:作PH⊥CM于H,∵△ABC是等边三角形,∴∠APC=∠ABC=60°,∠BAC=∠BPC=60°,∵CM∥BP,∴∠BPC=∠PCM=60°,∴△PCM为等边三角形;(2)∵△ABC是等
证明:(1)∵AD平分∠BAC,∴∠1=∠2,(2分)∵BF切⊙O于点B,∴∠3=∠2,∴∠3=∠1,(4分)又∵∠2=∠4,∴∠3=∠4,即BD平分∠CBF;(6分)(2)在△DBF和△BAF中,∵
∠AOC=2∠B=60°圆心角等于圆周角的2倍,所以∠AOC=60度∵AO=CO,OH⊥AC∴∠AOH=30°、△OAC为等边三角形,所据此求出OA长度,可以计算出劣弧弧AC的长;根据含30°角的直角
(1)∵∠ACB=∠ABF=∠ABC,(圆周角等于弦切角)∴AB=AC(底角相等的三角形是等腰三角形).(2)连接DB,∵∠ADB=∠ABF=∠ABC,∴△ADB∽△ABE.∵AD=4,cos∠ABF
证明:∵BC平行DE.∴∠AED=∠ACB;又∠ADB=∠ACB.(同弧所对的圆周角相等)∴∠AED=∠ADB.(等量代换)--------------------------------------
(1)如图,连结CD,OC,则∠ADC=∠B=60°.∵AC⊥CD,CG⊥AD,∴∠ACG=∠ADC=60°.由于∠ODC=60°,OC=OD,∴△OCD为正三角形,得∠DCO=60°.由OC⊥l,得
连接OC,OB因为pc,pb是圆O的切线所以
证明:连接AD,BD因为DC平分∠ACB所以∠ACD=∠BCD所以弧AD=弧BD所以点D是弧ADB的中点连接OD,根据垂径定理OD⊥AB因为L是切线所以OD⊥L所以AB‖L(同垂直于一条直线的2条直线
证明:1)连接OD因为DE与圆O相切于D所以DO⊥DE因为AD平分∠BAC所以弧BD=弧DC所以DO⊥BC(根据垂径定理)所以DE∥BC2)因为弧BD=弧DC所以DC=BD=2因为DE∥BC所以∠E=
1、∠AOC=2∠B=60°2、半径OC=OH/(√3/2)=106√3/3弧AC=OC×(π/3)3、OAD为直角三角形∠OAD=90°,∠AOD=60°所以,AD=OA×√3=106√3/3×√3
由题意AB/AP=AP/AB所以三角形ABD相似于三角形APB所以∠ABD=∠APB弧AB所对的角为∠APB和∠ABC所以∠APB=∠ACB∴∠ABD=∠ACBAB=AC∠APB和∠ABC对同弦AC∴
1)∠CBF=∠A,2)OB⊥EF,3)∠ABE=∠C
(1)AB⊥EF(2)O到EF的距离等于半径(3)∠CEF=∠A
设CE=6a,ED=5aCE*ED=AE*EB,AE:EB=2:3,AE=2根号5a,BE=3根号5aAB=5根号5a,cos∠CAB=AC/AB=8/5根号5a余弦定理:cos∠CAB=(64+20
你能求出第一问,说明你已经发现AE其实是△ABC外接圆的直径,设外接圆圆心为QQE=r=1.5,DE=0.6∴QD=0.9∵O是外心,而AB=AC∴AO是△ABC的高和中线∴AE⊥BC,BD=CD有勾
(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°.∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线.(2)①证明:∵D是弧AC的中点,∴∠
菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行
证明:(1)∵CD平分∠ACB,∴∠ACD=∠BCD,∵∠BCD=∠DAB,∴∠ACD=∠DAB,∴BE∥AD,∴∠EBA=∠DAB,∴∠ACD=∠ABE,∵AB=AC,∴∠ACB=∠ABC,∴∠FC
(1)证明:∵BF是⊙O的切线,∴∠3=∠C,∵∠ABF=∠ABC,即∠3=∠2,∴∠2=∠C,∴AB=AC;