如图△abc内接于圆○,角bac的平分线交圆○于点d,交bc于点e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:32:59
解题思路:结合三角形相似进行求解解题过程:解:设EF=x,则EH=,DP=x,AD=AP+DP=16+x,∵EH∥BC,∴△AEH∽△ABC,∴,∴解得,x=4或x=-8(负值舍去)即DP=4∴最终答
连接OB∵∠BCD=75°,∠ACD=45°∴∠ACB=30°∴∠AOB=60°∴AB=OA=2作AE⊥BC于点E∵AB=2,∠ABC=45°∴AE=√2∵∠ABC=30°∴CE=√6∴BC=√2+√
延长BD与AC交与K在△ABK中AB+AK>BD+DK(1)在△CDK中CK+DK>CD(2)(1)+(2)AB+AK+CK+DK>BD+DK+CDAB+AC>BD+CD
BD切圆O于B证明:连接BO并延长BO交圆O于E,连接AE∵直径BE∴∠BAE=90∴∠BAC+∠CAE=90∵∠CBE、∠CAE所对应圆弧都为劣弧CE∴∠CBE=∠CAE∵∠CBD=∠BAC∴∠EB
相等∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD
关于如图,三角形ABC内接于圆O
你这一题缺少条件,怎么缺少条件呢,我给你讲讲其实这道题角ABC=50度这个条件是可以变动的,你可以把B点画到圆弧AD的任意一点中,想想看,当把点B画到A点的旁边一点点,再构造一个角ABC=50度,同样
(1)连接BG,根据同一弧所对应的圆周角相等,可推出∠BGA=∠ACB再看△AHE和△ACD,共用∠DAC,而且∠BEC和∠ADC都是直角则△AHE∽△ACD,推出∠AHE=∠ACB,根据之前∠BGA
(1)证明:∵AB为直径,∴∠ACB=∠ADB=90°∵BD平分∠ABC∴∠CBF=∠FBA∵∠DAF+∠AFD=90°∠CBF+∠BFC=90°∠AFD=∠BFC(对顶角相等)∴∠DAF=∠CBF=
∠ACD=2∠DCE=2(∠B+∠E)=2∠B+2∠E∠ACD=∠B+∠BAC等量代换.可以得到你的∠BAC=∠E+∠B+∠E=2∠E+∠B再问:额,看不懂啊写跑题了吧再答:取CD=AC,∵EC是∠A
∵OA=OC∴∠OAC=∠OCA又∠OAC+∠ABC=90而∠DCB+∠ABC=90∴∠OAC=∠OCA=∠DCB而CE平分∠OCD则∠ACE=∠OCA+∠OCE=∠BCD+∠DCE=∠BCE则弧AE
角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8
证明:连接AD,BD因为DC平分∠ACB所以∠ACD=∠BCD所以弧AD=弧BD所以点D是弧ADB的中点连接OD,根据垂径定理OD⊥AB因为L是切线所以OD⊥L所以AB‖L(同垂直于一条直线的2条直线
选C理由:设BO的延长线交圆O于H点,交AC于点I.由外接圆性质:三角形的外接圆是由三边的垂直平分线的交线,这一性质可知,AI=CI,弧AH=CH,∠ABH=∠CBH,①:由已知条件很容易得到:三角形
连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠
证明:∵DG∥BA∴∠1=∠3(内错角相等)∵AD⊥BC,EF⊥BC∴EF∥AD∴∠2=∠3(同位角相等)∴∠1=∠2
(1)连接DC,过点D做AC的垂线交AC的延长线于F由于AD是角平分线,DE=DF此外角ABD=角DCF,角DEB=角DFA故而三角形BED全等于三角形CFDBE=CF,从而AC+BE=AC+CF=A
连接AO并延长与圆交与M,连接BM则△ABM相似△ADCAB:DA=AM:ACAB×AC=AM×AD=10×2=20
证明:(1)∵CD平分∠ACB,∴∠ACD=∠BCD,∵∠BCD=∠DAB,∴∠ACD=∠DAB,∴BE∥AD,∴∠EBA=∠DAB,∴∠ACD=∠ABE,∵AB=AC,∴∠ACB=∠ABC,∴∠FC
连接OD,因为D是弧BC的中点,所以OD垂直于BC,又因为AE垂直于BC,所以OD平行于AE,所以∠ODA=∠DAE因为OD=OA,所以∠ODA=∠OAD所以∠OAD=∠DAE所以AD平分角OAE