如图三条直线l1.l2.l3相交于一点o角1=二分之三角2=42度求角3的度数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:20:36
过B做DE⊥l1于D,交l3于E,过C做CF⊥l1于F令AD=x,AF=y则CE=x+y从而构造出三个直角三角形ABD、ACF、BCE因为AB=AC,BAC=120°所以BC:AB=√3:1利用勾股定
我来和你讲一下吧过A做l的垂线交l1于D交L2于E过c做L1的垂线交L1于F设三角形ABC边长为X由勾股定理:求出BDCE和FB然后有无、因为四边形DECF是矩形所以DF等于CE分类讨论1c在b的左侧
∵直线l1:y=2x+3,l2与l1关于直线y=-x对称,∴l2的方程为-x=2(-y)+3,即x-2y+3=0,∴l2的斜率为12,由直线l3⊥l2得:l3的斜率是-2,故答案为-2.
(1)∠1+∠2=∠3由P点做l5//l1,因为l1//l2,由平行线的传递性可以知道,如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以l2//l5设l5把∠3分成∠4和∠5(∠4在l5
l1过原点y=kx过M2=k所以2x-y=0l2垂直y轴是y=y0过(0,-1)则y0=-1所以y+1=0l3过(3,0),(0,-2)截距式x/3+y/(-2)=1两边乘62x-3y-6=0
选择A、D;(分析——显然,这是一道多项选择题:一、L1、L2是一对平行线,斜率应相同;A、D选项的前两个数符合这一条件,即都是1或都是-1.二、L3垂直于一对平行线L1、L2,说明L3的斜率是L1、
(1)作PE平行l1,l2所以∠1=∠CPE,∠2=∠EPD因为∠3=∠CPE+∠EPD所以∠3=∠1+∠2(2)不发生变化(3)①当P点在A的上方时,作PF平行l1,l2所以∠1=∠FPC,∠FPD
证明:L1和L2交与点A证明L1和L2共面,L2和L3交与点C证明L2和L3共面,L3和L1交与点B证明L1和L3共面,于是这三条线共面.
1,设PCD=∠1,∠PDC=∠2;那么∠ACP+∠1+∠2+∠PDB=180°.又因为∠1+∠2+∠CPD=180°,得∠ACP+∠PDB=∠CPD.2,P在AB两点之间运动,关系不会发生变化.3,
证明:连接AF,交L2于G点,连接BG、GE,可知BG//CF,GE//AD在∆ACF中,BG//CF即AB/BC=AG/GF在∆ADF中,GE//AD即DE/EF=AG/GF
设L1的斜率为k1,L2的斜率为k2,L3的斜率为k3设L1与L3的夹角为α,L2与L3的夹角为β因为直线L1和直线L2关于L3对称所以α=β即tanα=tanβtanα=(k3-k1)/(1+k1k
L1交L2于A,L1,L2共面B在L2上C在L1上直线BC(即L3)在平面L1,L2确定平面上.
你可以判断l1l2l3从上到下的位置分别是l1l3l2也就是说l1与l3之间的距离是1l2与l3的距离也是1边长就是l1和l2的距离也就是2图就可以画出设字母是ABC过A像BC做垂线D(也就是l3)∴
∵l1平行l2平行l3∴AB/BC=DE/EF∴AB×EF=BC×DE∴AB×EF=DE×BC∴AB/DE=BC/EF
(1)∠2=∠1+∠3.证明:如图1,过点P作PE∥l1,∵l1∥l2,∴PE∥l2,∴∠1=∠APE,∠3=∠BPE.又∵∠2=∠APE+∠BPE,∴∠2=∠1+∠3;(2)①如图2所示,当点P在线