如图三角形ABC中AB与O相切D为切点AC,BC与O相交于点EF且AC=AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:54:57
因为:圆O与BC相切与点D所以:OD⊥BC又因为:∠C=90°所以:AB⊥BC所以:OD//AB所以:∠CAD=∠ADO因为:OA=OD所以:∠OAD=∠ADO所以:∠CAD=∠OAD所以:AD平分∠
连接GO,FO根据边边边证得△AOG和△AOF全等∴∠GAO=∠FAO则AO与△ABC上∠A的角平分线重合连接AD三线合一定理∴AD是∠A的角平分线,且AD⊥BC∴点O在AD上,则OD⊥BC又∵OD是
1、证明:连接OE,∵AC与圆O相切,∴OE⊥AC,∵BC⊥AC,∴OE∥BC,又∵O为DB的中点,∴E为DF的中点,即OE为△DBF的中位线,∴OE=1/2BF,又∵OE=1/2BD则BF=BD2,
连结OE,则OE⊥AB,∵圆O是Rt△ABC的内切圆,∴BO是∠ABC的角平分线,∴∠OBE=∠DBC∴Rt△BOE∽Rt△BDC,∴BE:BC=BO:BD即BE*BD=BO*BC
OD=OE,且=CD=CE,所以ODCE是正方形,AB=2√5OE=ODOE/CA=OB/ABOD/BC=AO/ABOE/CA+OD/BC=OB/AB+AO/AB=1OE=OD=4/3OB=4/3/4
相切的.依题三角形ABC为等腰三角形,则AO垂直于BC,所以三角形AOB和AOC及圆O关于AO对称,所以相切
解题思路:(1)过点O作OF⊥BC,垂足为F,连接OD,根据角平分线的性质可得出OF=OD,继而可得出结论;(2)根据S△ABC=S△AOC+S△BOC,可得出⊙O的半径解题过程:证明:(1)过点O作
弦切角=圆周角∠AED=∠ABE∠FEC和∠FBE都是∠F的余角∠FEC=∠FBE∠FEC∠AED是对顶角∠FEC=∠AED所以∠ABE=∠FBE∠F,∠BDE分别是∠ABE∠FBE的余角所以∠F=∠
设以BD为直径的圆的圆心为O,因为圆与AC相切于E,所以OE垂直AC于E,所以OE平行与BF,角DFB=角DEO,因为OD=OE,所以角DEO=角ODE,所以角DFB=角BDF,所以BD=BF.因为B
1.首先连OE由于圆O与AC相切,故OE垂直与AC,所以OE//BC,又OD=OB,所以OE是三角形BDF的中位线,因此DE=EF,又因为BE垂直于DF,所以三角形BDF是等腰三角形,故BD=BF2.
(1)要使圆O与AC边也相切,应增加条件AB=AC\x0d(2)因为AB=AC,即:△ABC为等腰△,又AO是三角形ABC的中线,故AO也是顶角∠BAC的平分线(等腰△三线合一).即圆心O在顶角∠BA
证:过o点作ac的垂线交ac于e点.所以角oec=90度.因为ab=ac,所以角b=角c.因为圆与ab相切,所以od垂直于ab,即角bdo=90度.因为o为bc中点,所以bo=oc由以上条件得三角形b
解题思路:主要考查你对直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)等考点的理解。解题过程:
∵∠B=90°,BD为直径,∴BC是⊙O的切线,∵AC切⊙O于E,∴CE=BC=6,连接OE,则OE⊥AC,∵∠AEO=∠B=90°,∠A=∠A,∴ΔAEO∽ΔABC,∴OE/BC=AE/AB,3/6
题目缺少条件,所给的四个答案均有可能!再问:不对,根据题目可得,三角形ABC雨三角形BDO是相似三角形,比值为3:4:5,不可能选A、B再答:给个图你看看吧,现有的条件是点O在AB上,但是可以随意移动
连接D、O.OD为圆半径.因为AC为圆的切线,显然OD垂直于AD(1)设圆的半径为r那么在直角三角形AOD中(r+AE)^2=AD^2+r^2(r+2)^2=4^2+r^2r^2+4r+4=16+r^
8/3设AD为x,则AO为根号x平方加OB,故AC:AD等于BC:OD,代入数据.
在三角形ABC中,∠C=90°,所以∠B+∠CAB=90°.因为∠CAE=∠B,所以∠CAE+∠CAB=90°,所以直线AE垂直于直径AB,然后,你明白了吧?再问:不。。。再答:直角三角形的两个锐角加
第一步,过c做AB的垂线,求得ABC的面积第二步,利用切线长定理,得AE=AM,BE=BN,CM=CN,设圆半径为R,连圆心到各边及各顶点连线,第三步,利用面积,三个小三角形的面积和=ABC的面积,求