如图三角形abc内接与圆o,AH垂直BC于点H,若AH等于24

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:34:51
如图三角形abc内接与圆o,AH垂直BC于点H,若AH等于24
如图,三角形ABC内接于圆O,CA=CB,CD//AB且与OA的延长线交于点D (1)判断CD...

(1)相切角OCD=角OCB+角BCD=1/2(角ACB)+角ACB)分别根据CA=CB,OC为角ACB的角平分线和内错角相等=90三角形内角和180(2)2倍的根号3

如图:O是△ABC内任意一点A'.B'.C'内分别是OA.OB.OC的中点.三角形ABC与三角形A'B'C'相似吗?为什

这和o无关啊……相似是必然的,中位线平行于底边,然后直接用平行或用AAA都可以证明相似~

如图,△ABC是圆o的内接三角形AE是圆O的直径 AF是圆O的弦 AF垂直于BC垂足为D BE与CF相等吗?为什么?

证明:∵AE是⊙O的直径∴∠ABE=90°∴∠BAE+∠AEB=90°∵AF⊥BC∴∠ADC=90°∴∠CAF+∠ACB=90°∵∠AEB=∠ACB(同弧所对的圆周角相等)∴∠BAE=∠CAF∴BE=

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

如图,圆O与圆A相交于C,D两点,A,O分别为两圆圆心,三角形ABC内接于圆O,弦CD交AB于G,交AO于F.求证AC的

利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于

如图O是三角形ABC内的一点,请比较角A与角BOC的大小

延长BO交Ac于E,∠BEC=∠A+∠ABE,∠BOC=∠BEC+∠ACO故∠BOC=∠A+∠ABE+∠ACO可知角BOC大于角A

几何证明选讲5.如图,三角形ABC是圆O的内接三角形,PA是圆O 的切线,A为切点,PB交AC于点E ,交圆O 于点D

因为PA是圆O的切线,A为切点,所以角PAC=弧ADC所对的圆周角=角ABC=60度,又因为PE=PA,所以三角形PAE是等边三角形.PA^2=PD*PB=1*(1+8)=9PA=PE=AE=3DE=

如图 三角形abc是圆o得内接三角形 ∠a=30°,bc=2cm 求半径

连接OB、OC因为∠A为弧BC所对圆周角所以圆心角∠O=2∠A=60°又OC=OB所以三角形OBC为等边三角形所以OB=OC=BC=2cm即圆O半径为2cm

如图,A,B,C,D是圆O上的四点,三角形ABC与三角形DCB全等吗?为什么?

不一定全等.只有一边相等和边的对角相等.不满足全等条件.随便举个反例就行了

如图△ABC内接与圆o,AD垂直于bc于

角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8

如图,三角形是圆O的内接三角形,AD是圆O的直径,AD=8,且角ABC=角CAD.

我们知道,在同圆或等圆中,同弧对应的圆周角相等,再结合已知条件∠CAD=∠ABC故有∠ADC=∠ABC=∠CAD,又AD是直径,所以△CAD是等腰直角三角形.∴∠ADC=∠CAD=45°弧AC长=8π

如图,三角形ABC是圆O的内接三角形,角A是30°,BC是2cm,求圆O的半径

连接OB,OC,所以;∠BOC=2∠A=60°,cos60°=(OB^2+OC^2-BC^2)/2OBOC,即(2r^2-4)/2r^2=1/2,r=2

如图,已知△ABC内接于圆O,∠CBD=∠A,判断BD与圆O的位置关系

答:BD与⊙O的关系是相切理由:作直径BE,连接CE因为BE是直径,所以∠BCE=90度所以∠EBC+∠E=90度因为∠A=∠E,∠A=∠CBD所以∠EBC+∠CBD=90度所以BE⊥BD根据“过直径

如图,三角形ABC内接于⊙O,AB为非直径的弦,∠CAB=∠B,则AE与⊙O相切于点A吗?

∠CAB=∠B与AE线无关,所以您的题目有误,应为∠CAE=∠B.连接AO并延长交圆的另一端于D,再连接CD.AD为⊙O的直径,故∠ACD=90°,则∠D+∠CAD=90°.∠B=∠D(圆周角相等),

如图,已知三角形abc内接与圆o,点o在三角形abc的高cd上,过o作oe垂直于ac与e,of垂直于bc与f,连接de、

菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行

如图,已知三角形abc内接与圆o,点o在三角形abc的高cd上,过o作oe垂直于ac与e,of垂直bc 连接de df

菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行

如图三角形ABC内接与圆O,AD平分∠BAC交⊙O与D,过D作DE‖BC,交AC的延长线与E

1、DE与圆O相切.因AD平分∠BAC,所以∠BAD=∠CAD,所以弧BD=弧CD,连接DO,则DO垂直平分BC,因DE//BC,所以OD垂直DE,所以DE与圆O相切.2、连接BO,交圆O于G,连接A

圆o的内接三角形abc,

证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B