如图三角形abc是等边三角形,ae=bd,eb的延长线dc于p点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:44:40
证明:因为三角形ABC是等边三角形所以AB=AC=BC因为DE平行BCAB平行EF所以四边形ABCE是平行四边形所以AB=CEAE=BC因为AC平行DF所以四边形ADBC和四边形ABFC是平行四边形所
∵△ABC是等边三角形;∴∠BAC=∠ACB=∠ABC=60°;AB=AC=BC;同理:∠ADE=∠AED=∠EAD=60°;AD=AE=DE;∴∠BAD=∠BAC-∠CAD=60°-∠CAD;∠CA
延长AB到点E,使BE=CN,连接DE∵∠DBE=∠DCN=90°DB=DC∴△DBE≌△DCN∴DE=DN∵易得:∠EDM=∠NDM=60°DM为公共边∴△DME≌△DMN∴MN=EM从而,有:MN
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
等下再答:∵△ABC和△ADE是等边三角形∴AD=AE,AB=AC∠BAC=∠DAE=60°∠BAD+∠DAC=∠EAC+∠DAC∴∠BAD=∠EAC(等式的性质)在△BAD和△CAE中AD=AE∠B
先证三角形ACE全等于三角形BCD(SAS)则角EBD=角EBC+角EAC而角AEB=角EBC+角EAC+角ACB=122
角E=30度,角ACB等于角CDE加角E,所以角CDE=30度,等腰再答:懂了没再问:嗯。。。大概吧,正在写再问:有点简略哈再答:我只写原理,你组织下。三角形的一个外角等于与它不相邻的两个内角的和。再
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
证明:∵△ABC是等边三角形∴∠EAF=∠EBD=60°,AB=BC=AC∵AD,BE,CF分别平分∠BAC,∠ABC,∠ACB∴AF=BF=二分之一AB,AF=二分之一AC,BD=二分之一BC∴AF
证明:因为三角形ABC和三角形ADE是等边三角形所以AB=AC角B=角BAC=角BAE+角CAE=60度AE=AD角DAE=角CAE+角DAC=60度所以角BAE=角CAD所以三角形BAE和三角形CA
证法一:这里用了两个明显的结论①当三角形两边不变时,第三边增大时,第三边对的角也增大.②当三角形两边不变时,第三边对的角增大时,其余两角都变小证明:由对称轮换性不妨设A》B》C那么BC》AC》AB∵A
证明:∵AE∥BC,∴∠EAC=∠ACB=∠B=60°.又AC=BC,AE=BD,∴△AEC≌△BDC(边角边).∴∠ACE=∠BCD,CE=CD.∴△CDE是等腰三角形.∵∠BCD+∠ACD=60°
因为三角形ABC是等腰三角形,且角ACB为90度,所以边AC=BC,所以三角形ABC为等腰直角三角形没有看到图只能这样回答再问:嗯嗯
∴⊿ABC是等边三角形,∴∠ACB=60º,又D为AC的中点,∴BD⊥AC,∴∠DBC=30º,又CE=CD,∴∠CDE=∠E,又∠CDE+∠E=60º,∴∠E=30
解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S
角BAD+角CAD=BAD+角BAE=60度,角CAD=角BAE.AD=AE,角CAD=角BAE,AC=AB,三角形ACD全等于三角形ABE
证明:∵等边△ABC,等边△DCE∴AC=BC,DC=EC,∠BAC=∠ABC=∠ACB=∠DCE=60∵∠ACE=∠DCE+∠ACD,∠BCD=∠ACB+∠ACD∴∠ACE=∠BCD∴△ACE≌△B
因为角ACE=角ECD=60度=角B因为三角形ABC是等边三角形,所以AB=AC再加上BD=CE所以三角形ABD全等于三角形AEC.所以,AD=AE所以角CAE=角BAD所以角BAC=角DAE=60度