如图三角形abc的角平分线cd,be相交于点f

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:24:19
如图三角形abc的角平分线cd,be相交于点f
如图,在三角形ABC中,CD是三角形ABC的角平分线,∠A等于2角B,求证BC等于AC+AD

证明:在BC上截取CE=CA,连接DE,由SAS可判定△ACD≌△ECD,AD=ED∴∠CED=∠A∴∠CED=2∠B∵∠CED=∠B+∠BDE∴2∠B=∠B+∠BDE,∠B=∠BDE∴EB=ED=A

如图,BD是三角形ABC中∠ABC的角平分线,CD是三角形ABC的外角ACE的平分线,它与BD的延长线交于D,我们将会得

∵BD是△ABC中∠ABC的角平分线,CD是△ABC的外角ACE的平分线∴∠DCE=二分之一∠ACE,∠DBE=二分之一∠ABC∵∠DCE是△DCB的外角∴∠DCE=∠D+∠DCB∵∠ACE是△ABC

如图 已知AD是三角形ABC的内角平分线,求证AB/AC=BD/CD.

这是角平分线定理用正玄定理AB/sin∠ADB=BD/sin∠BAD(1)AC/sin∠CDB=CD/sin∠CAD(2)AD是角平分线,sin∠BAD=sin∠CAD∠ADB+∠CDB=180sin

已知如图BD为角ABC的平分线,CD为三角形ABC的外角角ACE的平分线,CD与BD交于D 求

因为CD是角ACE的角平分线所以角1等于1/2角ACE因为BD是角ABC的角平分线所以角2等于1/2角ABC因为角ACE等于角A加角ABC所以1/2角ACE等于1/2角ABC加1/2角A即角1等于角2

如图,在三角形中,BD,CD是内角平分线,BP,CP是角ABC,角ACB的外角平分线   

(1)已知∠A等于30°,∴∠ABC+∠ACB=150°∵DC和DB平分∠ABC和∠ACB∴∠DBC+∠DCB=75°,∴∠D105°∵∠ABC+∠ACB,∴∠FCB+∠EBC=360°-150°=2

如图 ad为三角形abc的角平分线,角C=2角B,证明AB=AC+CD

证明:延长AC到P,使CP=CD,连接DP,∵CP=CD,∴∠1=∠ P∴ ∠2=2∠ P∵ ∠2=2∠ B∴ ∠B=∠ P,又∠

如图BD为三角形ABC的内角角ABC的平分线,CD为三角形ABC的外角角ACE的平分线,且与BD交于D,求证:角A=2角

∵BD为三角形ABC的内角角ABC的平分线,CD为三角形ABC的外角角ACE的平分线∴∠ABD=∠DBC,∠ACD=∠DCE设∠ABD=∠DBC=a,∠ACD=∠DCE=b,∠ACB=c则∠A+∠AB

如图,已知:CD,CF分别是三角形ABC的内角平分线和外角平分线,

∵CD为角ACB的内角平分线,所以∴∠BCD=∠ACD且∠ACD=∠ECD∴∠BCD=∠ECD∵DF‖BC∴∠EDC=∠DCB∴∠EDC=∠ECD∴ED=EC∵CF三角形ABC的外角平分线∴∠ECF=

如图 在三角形ABC中 BE CD分别是角ABC 角BCA的平分线 且BE=CD BD=CE 三角形ABE与三角形ACD

因为BE=CDBD=CEBC=BC所以△BCD与△CBE全等所以∠ABC=∠ACB∠CDB=∠BEC所以∠ADC=∠AEB因为BECD分别是角ABC角BCA的平分线所以∠ABE=∠EBC∠ACD=∠D

如图,BD为三角形ABC的角平分线,CD为三角形ABC的外角角ACE的平分线,求角BDC与角A的数量关系.

∵CD平分∠ACE∴∠ACD=∠ECD∵∠ECD=∠CBD+∠D∴2∠ECD=2∠CBD+2∠D∵∠ABD=∠CBD∴∠ACE=∠ABC+2∠D∵∠ACE=∠ABC+∠A∴∠A=2∠D

如图,BD、CD分别是 三角形ABC 的一个内角的平分线与一个外角的平分线,问 角BDC 与 角A 之间的等量关系.

如下分析:∠ABD=∠DBC;∠ACD=∠DCE;∠D=∠DCE-∠DBC(补角定理);∠A+∠ABD=∠D+∠ACD(对顶角定理);将以上两式合并,得出∠A+∠ABD=∠DCE-∠DBC+∠ACD将

已知,如图,在三角形ABC中,AB等于AC,CD,BE是三角形ABC的角平分线.求证:AD等于AE

因为 AB = AC 所以为等腰三角形 =》∠B = ∠C所以  ∠ABE = ∠ACD&

已知:如图,在三角形ABC中,CD是三角形ABC的角平分线,BC=AC+AD.求证:角A=2角B

在BC上作CE等于CA,连接DE因为CD平分角ACD所以角ACD等于角DCE(角平分线定义)在三角形ACD与三角形DCE中AC=EC(所作)角ACD=角DCE(已证)DC=DC(公共边)所以三角形AC

如图,已知三角形ABC中,角A=2角B,CD是角ACB的平分线

证明:延长CA到E,使AE=AD,连接ED∵AE=AD,∴∠E=∠ADE,∴∠CAD=∠E+∠ADE=2∠E,∵∠CAD=∠2∠B∴∠E=∠B,∠ECD=∠BCD,AD=AD∴△ECD≌△BCD∴BC

如图,BD·CD分别是三角形ABC的一个内角的平分线与一个外角的平分线,角A=50°,求BDC的度数.

∵BD平分∠ABC(已知)∴∠DBC=二分之一∠ABC(角平分线定义)∵CD平分∠ACE(已知)∴∠ACD=二分之一∠ACE(角平分线定义)∵∠A=180°-∠B-∠C(三角形内角和180)∠BDC=

如图,在三角形ABC中,角ABC的平分线相交于点E.延长AE,交三角形ABC的外接圆于点D,连接BD,CD,CE.

(1)∠BDA=∠BCA=60°(同弧圆周角)因为,∠BAC与∠ABC的角平分线AE,BE相交于点E所以,∠BAE+∠ABE=∠EBC+∠EAC=60°所以,∠BED=∠BAE+∠ABE=60°所以,

如图,三角形ABC中,角B的平分线和三角形ABC的外角平分线

解题思路:根据题意,由三角形外角的知识可求解题过程:见附件最终答案:略

如图 CD是三角形ABC的外角角ACE的平分线,BD是角ABC的平分线,问角ACD与角D的大小关系

CD平分∠ACE所以∠ACD=∠DCE∠DCE是三角形BCD的外角所以∠DCE=∠CBD+∠D∠CBD>0°∴∠DCE>∠D因为∠ACD=∠DCE∴∠ACD>∠D