如图三角形acb和三角形BCE都是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:15:51
如图三角形acb和三角形BCE都是
如图,三角形ABC全等三角形DEC,CA和CD,CB和CE是对应边,角ACD和角BCE相等吗?为什么?

∵△ABC≌△DEC,∴∠ACB=∠DCE,∴∠ACB-∠ACE=∠DCE-∠ACE,即∠ACD=∠BCE.

如图,在三角形ABC中,EF∥BC,三角形AEF和三角形BCE的面积相等,若三角形ABC的面积为1,则三角形CEF的面积

∵S△EFC=S△AEF∴△EFC与△AEF高相等∵EF∥BC∵△AEF∽△ACB∴S△AEF=4S△ACB=0.25∴S△EFC=S△EFB=S△AEF=0.25再问:为什么S△EFC=S△AEF?

如图,三角形ABC和三角形BCE都是等腰直角三角形,∠ACD=∠BCE=90度

结论:AE=BD∵△ACD和△BCE都是等腰直角三角形∴AC=CD,BC=CD∵∠ACD=∠BCE=90°∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB∴△ACE≌△DCB∴AE=BD

如图,三角形ACD和三角形BCE都是等腰直角三角形,∠ACD=∠BCE=90゜,AE交DC于F,BD分别交CE,AE于点

猜测AE=BD,AE⊥BD;(2分)理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,(3分)∵△ACD和△BCE都是等腰直角三角形,∴AC=CD

如图,三角形ACD和三角形BCE都是等腰直角三角形,角ACD=角BCE=90度,AE交CD于点F,BD分别交CE、AE于

AE和BD垂直且相等∵在△BCD和△ACE中BC=EC,CD=AD,又∵,∠ACE=∠BCD(共∠DCE且∠ACD=∠BCE=90°)∴△BCD≌△ACE∴AE=BD∵△BCD≌△ACE∴∠CAE=∠

如图1,C是线段AB上的一点,三角形ACD和三角形BCE都是等腰直角三角形,角ACD=角BCE=90度,连接AE.(1)

证明:(1)因为△ACD和△BCE都是等腰直角三角形,所以AC=DCCE=CB∠ACE=∠DCB=90°所以△ACE≌△DCB所以AE=BD(2)根据(1)△ACE≌△DCB有∠EAC=∠BDC延长A

如图,在三角形ABC中,∠ACB=90°,点E在斜边AB上,且∠BCE=∠BEC,求证:∠ACE=1/2∠B

作BD⊥CE于D∴∠BDC=90°∴∠ECB+∠DBC=90°又∵∠ACE+∠BCE=∠ACB=90°∴∠DBC=∠ACE∵BC=BEBD⊥CE∴∠EBC=2∠DBC=2∠ACE再问:额这是复制来的吧

如图,三角形ABD、三角形ACE、三角形BCE是分别以三角形ABC的边AB、AC、BC为一边的等边三角形.求证四边形AD

按图形,ΔACE是等边三角形.证明:∵ΔACE、ΔBCF为等边三角形,∴CB=CF,CA=CE,∠BCF=∠ACE=60°,∴∠BCF+∠ACF=∠ACE+∠ACF,即∠BCA=∠FCE,∴ΔBCA≌

如图,在三角形ABC中,AD、BE、BF分别为三角形ABC、三角形ABD、三角形BCE的中线,且三角形ABC的面积为12

结果是3△BEC面积是△BAC的一半,即是6(两三角形同底BC,可分别过A、E向BC做高,E为中点,则高的比是2:1,面积同高比)△BEF面积=△BCF面积=½△BEC面积=3(由B做三

如图,三角形ABC≌三角形DEC,CA和CD,CB和CE事对应边,∠ACD和∠BCE相等吗?为什么?

∵三角形ABC≌三角形DEC,CA和CD,CB和CE事对应边∴∠ACB=∠DCE∵∠DCB=∠BCD∴∠ACD=∠BCE

如图,在三角形ABC中,角ACB=90度,AC=BC,BCE垂直BE,CE与AB相交于点F.AD垂直CF,于点D,且AD

△ADC≌△ADF、△ADC≌△CEB.:若选择△ADC≌△ADF,证明如下:∵AD平分∠FAC,∴∠CAD=∠FAD,∵AD⊥CF,∴∠ADC=∠ADF=90°,又∵AD=AD,∴△ADC≌△ADF

如图,在三角形AC中,AD、BE、BF分别为三角形ABC、三角形ABD、三角形BCE、的中线,且ABC面积12,求三角形

图呢再问: 再答:12除以2再除以2=3(因为是中点),是三角形ABEBEDAECEDC的面积;3乘2=6,是三角形BEC的面积,又因为BF是CE的中点,也就是三角形BCE面积的一半;6除以

如图,在四边形ABCD中,E为AB上一点,三角形ADE和三角形BCE都是等边三角形,AB BC CD DA的中点分别为P

连接AC,BD,因为△AED和△BCE都是等边三角形,所以∠DEB=∠AEC=120°,EB=EC,ED=EA,所以△AEC≌△DEB,所以AC=DB,在△ADC中,因为N,M为AD,DC中点,所以M

如图,在三角形ABC中,AD BE BF分别为三角形ABC三角形ABD三角形BCE的中线,三角形ABC面积12,求三角形

ADBEBF分别为三角形ABC三角形ABD三角形BCE的中线三角形BCD的面积=三角形ABC的面积的个一半=6三角形BCE的面积=三角形BCD的面积的个一半=3三角形BEF的面积=3