如图三角形内接于圆o,AB等于AC,AD是圆O的切线,BD平行于AC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 15:47:25
(1)相切角OCD=角OCB+角BCD=1/2(角ACB)+角ACB)分别根据CA=CB,OC为角ACB的角平分线和内错角相等=90三角形内角和180(2)2倍的根号3
由条件知四边形ABCD为等腰梯形∠AOB=∠COD令∠1=∠AOB;∠2=∠AOD;∠3=∠BOC;圆半径为R四弧的等式同乘R得到2∠1=∠2+∠3又2∠1+∠2+∠3=2π得∠2+∠3=π解法一:A
作直径AE,连结BE,AD⊥BC,△ADC是RT△,由勾股定理,AD=4,〈ACD=〈AEB,(同弧圆周角相等),〈ABE=90度,(半圆上的圆周角是直角),△ADC∽△ABE,AE/AC=AB/AD
①AN?是不是没写完?②∵△ABC≌△ADE{已知AC=AD,AB=AE,公共角∠A},∠B=∠E;∵△ANC∽△AEN{公共角∠EAN,同弧圆周角∠ANC=∠B=∠E},故AN/AC=AE/AN=A
连接BE∵AB=AC∴∠AEB=∠ABC∵∠BAD=∠BAE∴ΔABD∽ΔABE∴AD:AB=AB:AEAE=AB^2/AD=36/4=9
补充:连结AD交BC于点E证明:∵D是弧BC的中点,∴∠DAC=∠BAD,又∵∠C=∠D,∴△AEC∽△ABD,∴AC/AE=AD/AB,证毕.
关于如图,三角形ABC内接于圆O
连AD∠CAD=∠CBD=∠ABD∠ADB=90所以有三角形ABD相似于三角形AFDAB/AF=AD/DF=10/7.5=4/3tan∠ABF=tan∠FAD=3/4
利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于
(1)证明:∵AB是⊙O的直径∴∠ADB=∠ACB=90°∵DE⊥AB∴∠DEA=90°∴∠ADE=∠ABD(都是∠DAE的余角)∵∠DAC=∠DBC(同弧所对的圆周角相等)∠DBC=∠ABD(BD平
图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠
(1)∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠D
解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.
连A0并延长交BC于M因为;AB=AC弧AB=弧AC又因为;AO过圆心所以;AM垂直并平分BC所以;BM=CM=4又因为;直角三角形BMO所以;B0的平方+MO的平方=0B的平方设半径为X(3-x)*
∵∠ACB=90°(直径对直角)∵CD是角平分线∴∠FCB=∠FCA=45°∵AE垂直CD于H∴∠CAH=45°∴∠CAH=∠FCB又∵∠B=∠E(同弦对等角)∴三角形ACE相似于三角形CFB
连接AO交延长交圆O于E∵∠AEB、∠ACB所对应圆弧都为劣弧AB∴∠AEB=∠ACB∵直径AE∴∠ABE=90∵AD⊥BC∴∠ADC=∠ABE∴△ABE∽△ADC∴AE/AB=AC/AD∴AE/8=
连接OD,∵AD是⊙O的切线,∴OD⊥AC,过O作OE⊥AB,垂足为E,又AC=AB,∴∠∠C=∠B,点O是BC的中点,∴OC=OB,∴⊿OCD≌⊿OBE﹙AAS﹚,∴OE=OD,又OE⊥AB,∴AB
(1)连接DC,过点D做AC的垂线交AC的延长线于F由于AD是角平分线,DE=DF此外角ABD=角DCF,角DEB=角DFA故而三角形BED全等于三角形CFDBE=CF,从而AC+BE=AC+CF=A
连接AO并延长与圆交与M,连接BM则△ABM相似△ADCAB:DA=AM:ACAB×AC=AM×AD=10×2=20