如图三角形的三个顶点均在圆o上d是弧ac的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:08:26
如图三角形的三个顶点均在圆o上d是弧ac的中点
如图三角形ABC的三个顶点在圆O上,AD垂直BC D为垂足 E为弧BC中点 求证∠OAE=∠EAD

七种都写,不重复?你20天之后再来取答案吧要不你就让p969他回答,自问自答

如图,△ABC的三个顶点都在圆O上,AD、BE是高,交点为H,BE的延长线交圆O于F.

1.延长AO交圆于G,连BGAG为直径∠ABG=90=∠ADC∠G=∠C,所以∠BAO=∠DAC2.BE⊥AC,AD⊥BC所以∠AHE=∠C又∠AFE=∠C∠AFE=∠AHE因为AC⊥BFEH=EF

如图,已知AE是圆心O的直径,三角形ABC的三个顶点都在圆心O上,延长高AD交圆心O于F,连接BE,CF求证BE=CF

两个错误:1,“三角形ABC的三个顶点都在圆心O上”应说“……都在圆O上”.2,“高AD交圆心O于F,”应说“……交圆O于F,”.证明:连结EF,AE是直径,角AFE是直角,又因AD垂直于BC,所以B

如图,三角形ABC的三个顶点都在圆O上,CE是圆O的直径,CD垂直于点D.(1)求证角ACD等于角BCE

用弧度来解就可以了连接EF,EF//AB从左往右,设角ACE为角1,ECF为角2,角BCF为角3,角1+角A+角2=90度,弧度CE90度,这样角A对应弧度CB,角2对应弧度EF,所以角1可以等于弧度

如图,三角形ABC的三个顶点都在圆o上,AD垂直于D,AE是圆o的直径,求证:AB*CD =AE*AD(*为乘以)

证明:在圆中AE为直径那么∠ACE=90度因为AD垂直BC所以∠ADB=90度所以∠ACE=ADB因为∠B和∠D都是弧AC所对的圆周角所以∠B=∠D因为∠ADB=∠ACE所以△ADB∽△ACE所以AD

已知三角形ABC的三个顶点都在圆O上,AB=AC,D是BC上一点,E是直线AD与圆的交点,如图1所示

(1)证明:连接BE,则∠E=∠C;AB=AC,则:∠ABD=∠C=∠E;又∠BAD=∠EAB(公共角相等).则:⊿BAD∽⊿EAB,AD/AB=AB/AE,AB^2=AD*AE.(2)当点D在BC延

如图,三角形abc的三个顶点都在圆o上,ab为直径,角cba的平分线交ac于点f,交圆o于点d,de垂直ab于点e,且交

∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;

如图,三角形ABC的三个顶点都在圆O上,AB=AC,点P是弧AB的中点,角BPC=60度,连接PA,PB,PC.求证:A

证明:∵∠BPC=60°∴∠BAC=60°(同弧所对圆周角相等)∵AB=AC∴△ABC是正三角形(两边相等且夹角为60°的三角形是正三角形)∵P是AB弧中点∴PA=PB(在同圆中,等弧对等弦)又AC=

如图以知三角形abc的三个顶点在圆o上ad是三角形abc的高ae是圆o的直径求证ab?ac=ad•

证明:因为AE是圆O的直径所以角ABE=90度因为AD是三角形ABC的高所以角ADC=90度所以角ABE=角ADC=90度因为角AEB=角ACD=1/2弧AB所以三角形ABE和三角形ADC相似(AA)

如图,三角形ABC的三个顶点在圆O上,AD是三角形ABC的高,AE是圆O的直径.试说明:角1=角2

因为园内等弧对等角,所以角BEA=角BCA角1=90°-角BEA角2=90°-角BCA所以角1=角2

如图,△ABC的三个顶点都在圆O上,AD平分∠BAC,交BC于点D,交圆O与点E

证明:∵弧AB=弧AB∵∠AEB=∠ACD∵AD平分∠BAC∴∠BAE=∠DAC∴△ABE≈△ADC∴AB/AE=AD/AC∴AB*AC=AD*AE

如图,三角形ABC的三个顶点在圆O上,AD是三角形ABC的高,AE是圆O的直径,求证:∠1=∠2

证明:∵AE是△ABC的外接圆直径,∴∠ABE=90°.∴∠1+∠E=90°.∵AD是△ABC的高,∴∠ADC=90°.∴∠2+∠ACB=90°.∵∠E=∠ACB,∴∠1=∠2.

如图,三角形ABC的三个顶点在圆O上,且角ACB的外角平分线交圆O于E,EF⊥BD于F.

连接BE和CE,作EM垂直AC于点M然后证明△AEM和△BEF全等就可以了这样会得到结论AF=BF所以BF+CF=AM+CM所以(BF+CF)/AC=1,保持不变.

如图三角形ABC的三个顶点在圆O上,AD是三角形ABC的高,点E是弧AB的中点,求证角EAO=角EAD

应该是点E是弧BC的中点连接OE交BC与点F∵E是弧BC的中点,OE是半径∴OE⊥BC∵AD⊥于BC∴AD∥OE∴∠OEA=∠EAD∵OE=OA(半径)∴∠EAO=∠OEA=∠EAD即∠EAO=∠EA

如图,三角形ABC的三个顶点在圆O上,AE是圆O的直径,CD⊥AB于点D,证明AC*BC=AE*CD

证明:连结CE,因为AE是直径,所以∠ACE=90度,CD⊥AB于点D,所以∠CDB=90度,所以∠ACE=∠CDB,又因为∠CBD=∠AEC,所以△CDB相似于△ACE,所以BC/AE=CD/AC,

如图,三角形ABC的三个顶点在圆O上,且∠ACB的外角平分线交圆O于E,EF当三角形ABC的外角平分线交圆O于E,EF垂

1.EO⊥平分AB连接AE、BE因为CE是∠ACD的平分线,所以:∠ACE=∠ECD而,∠ECD=∠BAE(圆内接四边形的一个外角等于不相邻的内角)所以,∠BAE=∠ACE而,∠ACE=ABE(同弧所

已知:如图,三角形ABC三个顶点都在圆O上,AD垂直BC

我知道再答:连接OB再答:使角ACD等于角3再答:角2加角3等于90度再答:圆周角等于圆心角的一般再答:所以角AOB等于2角三再答:又因为AO等于BO所以角1等于角ABO再问:角3是哪个?再答:那么,

如图:△ABC的三个顶点在圆O上,角B=30°,AC=5,求圆O的半径

根据你的图,大抵是这样推理的吧~因为ABC是圆内接三角形,而且其中一边过圆心,所以角C应该是直角.如果角B是30度,那么AB就是AC的两倍.那么AB就是10.因为AB是直径,所以半径是5.

如图,△ABc的三个顶点均在圆O上,且AB=AC=3cm,∠BAC=120度,求圆O半径

∠BAC=120度所以∠BOC=60度因为OB=OC所以三角形BOC是正三角形所以OB=OC=BC因为∠BAC=120,AB=AC所以取BC中点D连接AD则AD垂直平分BC所以∠ABC=ACB=30度

如图三角形ABC的三个顶点在⊙上,AE是圆O的直径,CD⊥AB于点D,证明AC*BC=AE*CD.

连接BC∠ACE=90°sinAEC=AC/AE∠AEC=∠ABCsinABC=CD/BC=sinAEC=AC/AECD/BC=AC/AEAC×BC=AE×CD