如图四边形abcd中,角ACB=角ADB=90 角dbc=60 e是ab的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:14:25
是不是应为“四边形ABFC中,且CF=AE.”∵∠ACB=90°,CF=AE.EF垂直平分BC,∴BF=FC,BE=EC,∴四边形BECF是菱形∴BE=EC=BF=CF=AE∴BE=AE
作AE⊥AC,DE⊥AE,两线交于E点,作DF⊥AC垂足为F点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD,∠ACB=∠E=90°∴△AB
不知道说的是哪个角,反正OA=OC(斜边中线等于斜边一半)那么角OAC=角OCA
证明:(1)∵AD=CD,DE⊥AC,∴DE垂直平分AC,∴AF=CF,∠DFA=DFC=90°,∠DAF=∠DCF.∵∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°,∴∠DCF=∠DA
设正方形的边长为X三角形AED与三角形DFB下似,有FB:ED=DF:AE即:(8-X):X=X:(24-X),解得X=6又因为三角形AEG与三角形ACF相似,有AE:AC=EG:CF即(24-6):
做CE∥BD交AD延长线于E∵AD(DE)∥BC∴BDEC是平行四边形∴∠DBC=∠EBD=CE∵AC=BD∴AC=CE∴∠E=∠CAD∵AD∥BC∴∠CAD=∠ACB∴∠ACB=∠DBC
(1)∵AC平分∠DAB∴∠DAC=∠CAB又∵∠ADC=∠ACB=90°∴△ADC∽△ACB∴AD/AC=AC/AB∴AC²=AB*AD(2)∵E为AB的中点∴CE=1/2AB=AE∠EA
证明:∵∠A+∠D+∠ABC+∠BCD=360∴∠ABC+∠BCD=360-(∠A+∠D)∵BP平分∠ABC,CP平分∠BCD∴∠CBP=∠ABC/2,∠BCP=∠BCD/2∴∠BPC=180-(∠C
∵∠D=90°∴由勾股定理得:AC²=CD²+AD²∴AC=4∵BC=3,AB=5∴AB²=AC²+BC²∴AC⊥BC∴S△ABC=AC*B
证明:∵AC平分∠DAB(1) ∴∠DAC=∠BAC &nb
因为∠DBC=∠ACB所以△BOC中OB=OC(等角对等边)又因为AC=BD所以AO=DO因为AO=DO,OB=OC,∠AOB=∠DOC(对顶角相等)所以△AOB全等于△DOC所以AB=DC因为AD
提示:过D作DE∥AC交BC的延长线于E,则四边形ACED为平行四边形,∴AC=DE,AC∥DE.∴∠E=∠ACB,DB=DE=AC,∠DBC=∠E,∴∠DBC=∠ACB.
AD平行BC,内错角相等两直线平行
(1)证明:∵∠ACB=∠DBC,∴OB=OC,∵AC=BD,∴OA=OD,∴∠OAD=∠ODA,∵∠DOC=∠OAD+∠ODA=∠OBC+∠OCB,∴2∠OAD=2∠OCB,∴∠OAD=∠OCB,∴
1连接BD因为AB平行CD所以角DBA=角BDC因为角DBA=角BDC角A=角CBD=BD所以三角形ABD全等于三角形CDB所以AB=CD因为AB平行CDAB=CD所以四边形ABCD是平行四边形2∵A
证明1:在△ABC和△CDA中∵AD=BC,∠ACB=∠CAD,AC=AC,∴△ABC≌△CDA (SAS).∴AB=CD.证明2:∵∠ACB=∠CAD,∴AD∥BC.∵AD=B
过点D作DE//AC交BC的延长线于E证明:因为AD//BC,AC//DF所以四边形ACFD是平行四边形∠ACB=∠BFD所以AC=DF所以BD>DF所以∠BFD>∠DBC所以∠ACB>∠DBC
解法1:因AB=BC=CD=DA所以四边形ABCD是菱形(根据:四条边都相等的四边形是菱形)解法2:因AB=CD,BC=DA所以四边形ABCD是平行四边形又AB=BC所以四边形ABCD是菱形(根据:有
分别过A做CD的垂线,交CD于E,做BC的垂线,交BC的延长线于F,得AE=DE=2,AC=4,CE=2√3所以△ACD面积为0.5*AE*CD=2+2√3由AC=4,得AF=2,CF=2√3,又AB