如图四边形ABCD的对角线AC,BD相交于点 P 过点P作直线EF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:08:24
如图四边形ABCD的对角线AC,BD相交于点 P 过点P作直线EF
如图,点O是四边形ABCD对角线AC的中点,E,F分别为AB,AD的中点,连接OE,OF得四边形AEOF与四边形ABCD

相似,因为OE//BC,OF//BC再问:怎么证出来的(还有对角线相等的两个矩形必相似吗再答:一共四个边,两个边重合,两个边平行,必相似对角线相等是什么意思,是长度相等?再问:是的对角线相等的两个矩形

如图(1),连结四边形ABCD的对角线AC,把四边形分成了2歌三角形,可以得到四边形的内角和是360°

解(1)∵三角形内角和=180°∴△ABC内角和=△ACD内角和=180°∴△ABC内角和+△ACD内角和=180°+180°=360°即平行四边形ABCD内角和为360°(2)∠A+∠B+∠C+∠D

如图,设O是四边形ABCD的对角线AC上的一点,OF‖CD,OE‖CB,四边形AEOF与四边形ABCD相似么?为什么?

很明显,两个四边形相似把四边形当成两个三角形看因为OF‖CD,OE‖CB∴三角形AOF≌三角形ACD三角形AOE≌三角形ACB∴四边形AEOF与四边形ABCD相似

如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1是四边形ABCD的中点四边形,如果AC=8,B

∵A1,B1,C1,D1是四边形ABCD的中点四边形,且AC=8,BD=10∴A1D1是△ABD的中位线∴A1D1=12BD=12×10=5同理可得A1B1=12AC=4根据三角形的中位线定理,可以证

如图,四边形的两条对角线AC,BD互相垂直,AC+BD=10,当AC,BD的长是多少时,四边形ABCD的面积最大?

y=-(1/2)x²+5x到此之前我想你都理解了.对于函数y=-(1/2)x²+5x:a=-0.5,b=5,c=0∵a<0,∴抛物线图像开口向下,当(x,y)为顶点时y最大.此时x

如图,已知四边形ABCD是平行四边形,对角线AC,BD相交于点O,已知四边形ABCD的周长是48cm,而三角形COD的周

AD=10cm,AB=14cm∵△AOD的周长=AO+DO+AD△COD的周长=DO+CO+CD=DO+AO+CD由题意知AO+DO+AD+4=DO+AO+CD,AD+4=CD所以2(AD+CD)=4

如图,四边形ABCD的对角线AC、BD互相垂直,E、F、G、H分别为四边中点.求证:四边形ABCD为矩形

证明:∵E、F、G、H分别为四边中点∴EF‖AC,EF=1/2AC,GH‖AC,GH=1/2AC∴EF‖GH,EF=GH∴四边形EFGH是平行四边形∵AC⊥BD∴EF⊥EH(∵EH‖BD,EF‖AC)

如图:四边形ABCD的对角线AC与BD交于点O,AD平行BC,OA=OC,试说明四边形ABCD为平行四边形

证明:∵AD平行BC∴∠OAD=∠OCB【两直线平行内错角相等】在△OAD和△OCB中OA=OC∠OAD=∠OCB∠AOD=∠COB【对顶角相等】∴△OAD≌△OCB【AAS}∴OB=OD【全等三角形

如图,四边形ABCD的对角线AC与BD相交于点O

∵S△AOD/S△AOB=(OD×h)/(OB×h)=OD/OBS△COD/S△COB=(OD×H)/(OB×H)=OD/OB∴S△AOD/S△AOB=S△COD/S△COB

如图,四边形ABCD的对角线AC与BD相交于点0.

∵S△AOD/S△AOB=(OD×h)/(OB×h)=OD/OBS△COD/S△COB=(OD×H)/(OB×H)=OD/OB∴S△AOD/S△AOB=S△COD/S△COB

如图,四边形的对角线AC、BD互相垂直,AC+BD=10,当AC、BD的长是多少时,四边形ABCD的面积最大?

设AC=x,四边形ABCD面积为S,则BD=10-x,S=12x(10-x)=-12x2+5x,∵-12<0,∴抛物线开口向下,当x=-52×(−12)=5时,S最大=-12×52+5×5=252,即

如图,设O是四边形ABCD的对角线AC上的一点,OF平行于CD,OE平行于BC,证明:四边形AEDF与四边形ABCD相似

AEDF打错.是AEOF !如图,∵OF‖CD,OE‖BC.∴⊿AEO∽⊿ABC ⊿AOF∽⊿ACDAE/AB=EO/BC(=AO/AC)=OF/CD=FA/DA.,又显然四对角对

如图,四边形ABCD的对角线AC被E、F、G四等分,且阴影部分面积为12平方厘米.求四边形ABCD的面积.

(得到了个平行四边形的面积FGC空白面积:BC×三分之一H除以2求ABCD面积,即:36×2=72(平方厘米)

如图,过四边形ABCD的各顶点作对角线BD,AC的平行线围成四边形EFGH,若四边形EFGH是菱形,则原四边形一定是(

填:对角线相等的四边形根据平行四边形的判定,可得四边形EFGH是平行四边形,又知它是菱形,则AC=BD所以只能推出一定是对角线相等的四边形

如图,已知AC是平行四边形ABCD的对角线,DE⊥AC,BF⊥AC,求证四边形DEBF是平行四边形

∵ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAF=∠DCE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,BF∥DE(垂直于同一条直线的两直线平行),∴ΔABF≌ΔCDE(AAS

如图,四边形ABCD是边长13cm的菱形,其中对角线AC长为10CM.(1)对角线BD的长度;(2)菱形ABCD的面积.

½bd=√﹙ab²-¼ac²﹚=√﹙13²-5²﹚=12㎝bd=24㎝面积=ac×bd÷2=10×12÷2=60㎝²