如图圆o为三角形的外接圆,角bac=60°,h为边ac,ab上高

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:16:53
如图圆o为三角形的外接圆,角bac=60°,h为边ac,ab上高
圆o是三角形abc的外接圆,一直角b=60度,则角cao的度

解题思路:连接OC.根据圆周角定理求得∠AOC=2∠B,再根据等腰三角形的性质和三角形的内角和定理即可求解.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.Open

已知圆O为三角形ABC的外接圆,边长为6,求圆O的半径

题目没说是等边三角形,如果是的话,那么很好算.边长为6,则正三角形的高等于3根号3,三条中线的交点是外接圆的圆心,它到每个三角形的顶点距离等于中线长的三分之二.所以,用3根号3乘以三分之二,得2根号3

三角形外接圆半径已知一个任意三角形的三边之长为a.b.c,如何不用正弦定理求出其外接圆的半径R.

步骤:⑴s=(a+b+c)/2⑵面积=(s(s-a)(s-b)(s-c))开平方根⑶外接圆半径=abc/(4×面积)

已知三角形AOB的顶点坐标分别是A(4.0)B(0.3)O(0.0)三角形AOB外接圆的方程. 用

首先这是个直角三角形,其次存在一点到三点的距离相等.再答:再问:������Ҫ���д���������再问:������Ҫ���д���������再答:���ˡ���������һ������ôѧ

直线y=三分之根号3x+2与y轴交于点A,与x轴交于B,圆C是三角形ABO的外接圆【O为坐标原点】,角BAO的平分线交

(1)由y=(√3/3)x+2当x=0时,y=2,∴A(0,2)当y=0时,x=-2√2,∴B(-2√2,0)∵BO/AO=√3,∴∠ABO=30°,∠BAO=60°.又AD平分∠BAO,∴∠BAD=

三角形ABC外接圆O半径为5,AB=8,过点B作垂线BD垂直AC交于D,求tg角CBD值

连AO,并延长交圆于E点,因为AE是直径,所以∠ABE=90°,AE=2r=10,由勾股定理,得,BE=6,所以cot∠E=BE/AB=3/4,因为∠E=∠C,所以cot∠C=cot∠E=3/4,因为

如图,AD是三角形ABC外接圆的直径,角ABC=角CAD,圆心O的半径OA为5cm,求AC的长

连接dc因为ad为直径所以角acd为直角角abc等于角cad又因为角abc和角adc弧ac所对应的圆周角所以两角相等即三角形cad为等腰直角三角形因为oa为5所以ad为10所以ac等于cd等于五倍的根

三角形ABC的面积为S,外接圆的半径为R,角A角B角C对边分别为a,b,c

证明:由正弦定理可知:c/sinC=2R,∴sinC=c/(2R)再由三角形面积公式,可知:S=(½)absinC结合上面结果,可得:S=(½)ab×[c/(2R)]=abc/(2

如图 三角形ABC中 AH⊥BC于H 圆O是三角形ABC的外接圆 AD为圆O的直径 求证角BAD=角CAH

证明:连接BD,∵AD是圆O的直径∴∠ABD=90°∴∠BAD+∠D=90°∵∠D、∠C所对应圆弧都为劣弧AB∴∠D=∠C∴∠BAD+∠C=90°∵AH⊥BC∴∠CAH+∠C=90°∴∠BAD=∠CA

在三角形ABC中,角A=60度,b=1,S三角形ABC的面积为根号3 则此三角形的外接圆直径为

S=bcsinA/2=1×c×(√3/2)/2=√3∴c=4a²=b²+c²-2bccosA=1+16-2×1×4×(1/2)=13∴a=√13由正弦定理得:2R=a/s

在三角形abc中,已知角a=60度,b=1,三角形abc面积为根号3,则三角形外接圆的直径为多少

由三角形的面积与b=1,角a=60度计算出a的值a*bsin∠A/2=根号3因此a=2可以作一个直角三角形,一个角60度的,由图看出斜边就是圆的直径因此圆的执行是三分之四根号3再问:答案貌似不正确,不

已知在三角形ABC中,AB等于AC,圆O为三角形ABC的外接圆,CD为圆O的直径,DM平行于AC

延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B

圆O是三角形AEF的外接圆,AD平分角EAF交圆O于D,过点D做EF//BC交AE,AF于B,C,BA为圆O切线,

连接OA、OE,由题意知角ACB=角AFE=角AOE/2,∵在△AOE中,OA=OE=AE=5,∴即AOE=60°,那么即ACB=30°,cosACB=cos30°=√3/2.

过点p(4,2)作圆x^2+y^2=1的两条切线,切点分别为A,B,O为坐标原点,则三角形OAB的外接圆方程为

连接AB,OP,则OA⊥AP,OB⊥BP,PO⊥AB,且平分AB,∴OP=2√2,OA=1=OB,∴PA=PB=√7,设A点坐标为A﹙m,n﹚,则:①﹙2-m﹚²+﹙2-n﹚²=7

已知O为三角形ABC的内心,延长AO交外接圆于D,求证BD=OD=CD.

怎么说呢,很难说.我先口述,如果看不懂就发信息给我.内心即为角平分线交点所以∠BAO=∠OAC,角相等,所以弧BD=弧CD,等弧对等弦,所以BD=CD连接BO因为BO为∠B的角平分线,所以∠CBO=∠

已知三角形abc中,若a=1,角b=45°,三角形的面积为2,那么三角形的外接圆的直径是?

S=1/2acsinB=2所以c=4根号2;由余玄定理可得b=5;b/sinB=2R=5根号2

在rt三角形abc中,角acb=90°,bc>ac,圆o是三角形abc的外接圆,以c为圆心,bc为半径作

(1)证明:连接CE因为CD=CE=CB所以角CDE=角CED角CEB=角CBE因为角ACB=90度角ACB+角CDE+角CED+角CEB+角CBE=360度所以角CDE+角CBE=135度角CED+

如图圆O是三角形ABC的外接圆AD是圆O的直径若圆O的半径为5/2AC=2求角B的正切值

连接DC,角D=角B,AC垂直CD,求得CD=根号21,则角C正切为2/根号21,即得答案再问:角C正切为2/根号21??应该是角D吧??