如图圆o的直径ab=4,e为OA重点,弦cd经过点e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:16:30
设半径为R∵CD⊥AB∴CE=DE=CD/2=8(垂径分弦),OC²=CE²+OE²∵OE=OA-AE=R-4∴R²=64+(R-4)²∴R=10∴O
1.∵AB=AC,∠A=45°∴∠C=67.5°∵AB为直径∴∠ACB=90°∴∠EBC=90°-67.5°=22.5°2BD=CD证明:连接AD∵AB是直径∴AD⊥BC∵AB=AC∴BD=CD(等腰
解:(1)证明:∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,∴CB⊥平面ABEF.∵AF⊂平面ABEF,∴AF⊥CB,又∵AB为圆O的直径,∴AF⊥BF,∴AF⊥平面C
连接OB,设⊙O的半径是R,∴CD⊥AB,CD过O,∴AB=2AE=2BE,AE=BE=4,在Rt△OBE中,由勾股定理得:OB2=BE2+OE2,即R2=42+(R-6)2,R=133,答:⊙O的半
连接OC,OD,OE,由同弧对应的圆周角与圆心角之间的关系结合题中条件AE=AC可得∠CDE=∠AOC,又∠CDE=∠P+∠PFD,∠AOC=∠P+∠C,从而∠PFD=∠C,故△PFD∽△PCO,∴P
证明:(1)连接AD,∵∠BCD=∠BAC,∠CBE=∠ABC,∴△CBE∽△ABC,∴∠BEC=∠BCA=90°,∴∠CBA=∠ECA,又∵∠D=∠ABC,∴∠D=∠ACD,∴AC=AD.(2)连接
∵AB是⊙O的直径,∴∠C=90°,∵CD=4,CF=3,∴DF=5,∵AB∥DF,∴△ABC∽△DFC,∴BC:AC:AB=CF:CD:DF=3:4:5,连接OE,∵DF是切线,∴OE⊥DF,作CN
连接AD,则AD⊥BC,∵BD=CD,∴AB=AC,∠BAD=∠CAD=1/2∠BAC.°∵∠EBC=20°,∴∠EAD=20°即∠CAD=20°,∴∠BAC=2∠CAD=40°;(2)证明:由(1)
(1)∵直径AB⊥弦CD,∴AB平分弦CD,即CE=12CD=3.在Rt△OCE中,由勾股定理,得OE=OC2−CE2=52−32=4;(2)②,证明:连接OP(如图1),∵OC=OP,∴∠2=∠3,
因为AB是圆O的直径,点D在圆上所以∠ADB=90°又OC⊥AB所以∠EOB=∠ACB=90°又∠ABD=∠EBO所以Rt△EBO∽Rt△ABD则BO:BD=EB:AB(1)在Rt△EBO中,OB=O
连结AD,则可以证明AD垂直平分线段BC.1、三角形ACD为直角三角形,且角C=70°,则角CAD=20°,所以角A=20°×2=40°;2、AC=AB,正确;3、弧AB与弧BE明显不等;4、A、B、
连接CO,设半径CO=R.则OE=OA-AE=R-4.OE^2+CE^2=CO^2,即(R-4)^2+36=R^2,R=6.5
连接OC,则OB=OC∴∠OBC=∠OCB∵∠EAC=∠D=60°∴∠ABC=60°∴∠OBC=∠OCB=∠BOC=60°,∠AOC=120°∴BC=OB=OC∵BC=4∴OB=4∴AB=8∴⌒AC=
设半径为R∵AB⊥CD∴CE=DE=CD/2=8(垂径分弦),OC²=CE²+OE²∵OE=OA-AE=R-4∴R²=64+(R-4)²∴R=10∴O
运用三角形相似解这个题~三角形aec和三角形cad相似~cd的一半就是半径
设AE,EB长分别是4x,x,则AB长是5x,因为AB是直径,所以角ACB是直角,从而三角形ABC与三角形ACE相似,于是AB:AC=AC:AE,代入AC及所设的AE,AB值得:40=20x^2,所以
连接OE∵∠PEF=90°-∠OEB=90°-∠OBE=∠OFB=∠EFP∴PF=PE=4由勾股定理 PO²=PE²+OE²,得PO=5OF=PO-PF=1,&
(1)连接AD,∠ADB=90°,则∠ADC=90°,因为BD=CD,AD=AD,据边角边定理,△ADC=△ADB,所以AB=AC;(2)连接OD,则即证DE⊥OD,因为OA=OD,所以∠OAD=∠O
)这是相交弦定理,连AC,EB,因∠CAB=∠CEB,又有对顶角故三角形AMC∽EMB,所以AM*MB=EM*MC2)在直角三角形CDE中,CE=√(CD^2-DE^2)=√(64-15)=7EM=A
2半径为2,所以cd/2=1所以cd=2