如图圆O的直径是4CM C是弧AB的中点 弦AB CD相较于P

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:57:33
如图圆O的直径是4CM C是弧AB的中点 弦AB CD相较于P
如图,MN是半径为1的圆O的直径,点A在圆O上,角AMN=30度,B为AN弧的中点P是直径MN上一动点PA+PB的最小值

首先,“如图”两字很多余其次,很明显,这是高中数学的典型问题(怀念~)最后,哥几乎是完全忘了,短期内解不出来(不好意思呵)另外再说一句,会这题的绝大多数这时候还在为学业努力奋斗,没有时间上网,所以你这

如图,MN是半圆O的直径,A,B,C是半圆

270°,连接OA,OB,OC,形成四个等腰三角形AOM,AOB,BOC,CON,角OAM=(180-角AOM)/2,角OAB=(180-角AOB)/2,角BCO=(180-角BOC)/2,角OCN=

如图已知P是圆O外一点,PA切圆O于A,AB是圆O的直径,PB交圆O于C,PA=2cm,PB=4cm,求图中阴影部分的面

过C点.O点做辅助线CO,过O点做垂线,垂直PA交PA于D.由题意知,角PAB为直角.PB=2PA,所以角ABP等于30度.因圆心角是圆周角的2倍,所以角POA等于60度.在三角形PBA中,PB=4,

AB是圆O的直径.P是OA(不与A,O重合)上一点,C是园O上一点,求证PA

如图,以P点为圆心作2个圆,一个圆以PA为半径,由于其半径PA小于圆O的半径OA且2圆相切于点A,所以圆P内切于圆O,必然与PC相交与N,则PA=PN<PC一个圆以PB为半径,由于其半径PB大于

如图,AB是圆O的直径,直线a,b是圆O的切线,A,B是切点,则a,b有怎么样的位置关系?

a‖b∵a是圆O切线∴a⊥AB(切线与半斤垂直)∵b是圆O切线∴b⊥AB∴a‖b(内错角相等都是90度,两直线平行)

(2013•黄浦区二模)如图,MN是⊙O的直径,点A是弧MN的中点,⊙O的弦AB交直径MN于点C,且∠ACO=2∠CAO

(1)∵MN是⊙O的直径,点A是弧MN的中点,∴∠AOM=14×360°=90°,∴∠ACO+∠CAO=90°,∵∠ACO=2∠CAO,∴3∠CAO=90°,解得∠CAO=30°;(2)过点O作OD⊥

如图,AB是圆O的直径,BC是弦,PA切圆O于A.OP平行于BC,求证:PC是圆O的切线

证明:PA切圆O于A,则∠PAO=90°.连接OC.OP平行BC,则:∠AOP=∠B;∠COP=∠OCB.又OB=OC,∠B=∠OCB.∴∠AOP=∠COP;又OA=OC,OP=OP.故⊿AOP≌⊿C

CMC是指什么?

1.CMC就是网络的一种服务器,CMC又称网通,CMC和电信一样,是上网的服务器.如果你是电信的用户,进入了网通,那么速度就会很慢,如果电信的用户进电信的服务器,那么速度就会很快,同样网通也是这个道理

如图,已知AB为圆O的直径,AD切圆O于点A弧EC等于弧CB则下列结论不一定正确的是?

图所示:因为AD切圆o于点A,而AB是圆的直径所以AB⊥AD又因为弧EC=弧CB所以∠BOC=∠COE因为弧CE对应的圆周心是∠COE,而对应的圆周角是∠CAE所以∠COE=2∠CAE因为弧CB对应的

如图,MN是半径为1的圆O的直径,点A在圆O上,角AMN=30度,B为AN弧的中点,P是直径MN上一动点,则PA+PB的

在圆上取一点B',使弧B'N=弧BN,连接AB',交MN于P',连接PB'\x0d显然B,B'点关于MN对称,所以PB=PB'\x0d而在三角形APB'中,PA+PB'>AP'\x0d所以:PA+PB

MN是圆O的直径,MN=2,点A在圆O上,角AMN=30度,B是弧AN的中点,P是直径MN上的一动点,求PA+PB的最小

作关A关于直径MN的对称点C,则PA=PC所以PA+PB=PC+PB由于两点之间线段最短,所以B、P、C共线时PA+PB达到最小值.

如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,点P是直径MN上一个动点,则PA+P

过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴AN=A′N,∵∠AMN=30°,∴∠A′ON=60°

已知AB是圆O的直径,AP是圆O的切线,A是切点,BP与圆O交于点C

设圆O的半径为R则BC=2R则PB=PC+BC=4+2R因PA切圆O于A则AP²=PC·PB36=4×(4+2R)R=5/2再问:再答:设圆O的半径为R∵AP切圆O于A∴AP²=P

如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4.

(1)证明:如图,连接AC,∵点A是弧BC的中点,∴∠ABC=∠ACB,又∵∠ACB=∠ADB,∴∠ABC=∠ADB.又∵∠BAE=∠BAE,∴△ABE∽△ABD;(2)∵AE=2,ED=4,∴AD=

已知,AB为圆O的直径,以A为半径画弧,交圆O于C,D两点,试证明三角形BCD是等边三角形

已知,AB为圆O的直径,以A为圆心,以AO为半径画弧,交圆O于C,D两点,试证明三角形BCD是等边三角形证明:连接AC、AD、OC、OD因为:AC=AD=OC=OD,所以△OAC、△OAD都是等边三角

AB是圆O的直径

解题思路:连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的

如图,MN是半径为1的○O的直径,点A在○O上,弧AN等于半圆的三分之一,B为弧AN的中点,点P是直径MN上一个动点,则

作AA'⊥MN交圆O于A',连接BA'交MN与P,则此处PA+PB=BA'最小;因B是AN弧的中点,所以BNA'弧等于ANA'弧所对圆心角的¾倍=(π/3)*(3/4)=π/4;又圆O的半径

已知AB是圆O的直径 AD切圆O于A 弧EC=弧CB 则下列结论不一定正确的是

:如图所示:因为AD切圆o于点A,而AB是圆的直径        所以AB⊥AD   &n