如图圆O的直径是4CM C是弧AB的中点 弦AB CD相较于P
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:57:33
首先,“如图”两字很多余其次,很明显,这是高中数学的典型问题(怀念~)最后,哥几乎是完全忘了,短期内解不出来(不好意思呵)另外再说一句,会这题的绝大多数这时候还在为学业努力奋斗,没有时间上网,所以你这
270°,连接OA,OB,OC,形成四个等腰三角形AOM,AOB,BOC,CON,角OAM=(180-角AOM)/2,角OAB=(180-角AOB)/2,角BCO=(180-角BOC)/2,角OCN=
过C点.O点做辅助线CO,过O点做垂线,垂直PA交PA于D.由题意知,角PAB为直角.PB=2PA,所以角ABP等于30度.因圆心角是圆周角的2倍,所以角POA等于60度.在三角形PBA中,PB=4,
如图,以P点为圆心作2个圆,一个圆以PA为半径,由于其半径PA小于圆O的半径OA且2圆相切于点A,所以圆P内切于圆O,必然与PC相交与N,则PA=PN<PC一个圆以PB为半径,由于其半径PB大于
a‖b∵a是圆O切线∴a⊥AB(切线与半斤垂直)∵b是圆O切线∴b⊥AB∴a‖b(内错角相等都是90度,两直线平行)
(1)∵MN是⊙O的直径,点A是弧MN的中点,∴∠AOM=14×360°=90°,∴∠ACO+∠CAO=90°,∵∠ACO=2∠CAO,∴3∠CAO=90°,解得∠CAO=30°;(2)过点O作OD⊥
证明:PA切圆O于A,则∠PAO=90°.连接OC.OP平行BC,则:∠AOP=∠B;∠COP=∠OCB.又OB=OC,∠B=∠OCB.∴∠AOP=∠COP;又OA=OC,OP=OP.故⊿AOP≌⊿C
1.CMC就是网络的一种服务器,CMC又称网通,CMC和电信一样,是上网的服务器.如果你是电信的用户,进入了网通,那么速度就会很慢,如果电信的用户进电信的服务器,那么速度就会很快,同样网通也是这个道理
∠B=∠D,sinD=12/13,AC=ADsinD=12,答案是C
图所示:因为AD切圆o于点A,而AB是圆的直径所以AB⊥AD又因为弧EC=弧CB所以∠BOC=∠COE因为弧CE对应的圆周心是∠COE,而对应的圆周角是∠CAE所以∠COE=2∠CAE因为弧CB对应的
在圆上取一点B',使弧B'N=弧BN,连接AB',交MN于P',连接PB'\x0d显然B,B'点关于MN对称,所以PB=PB'\x0d而在三角形APB'中,PA+PB'>AP'\x0d所以:PA+PB
作关A关于直径MN的对称点C,则PA=PC所以PA+PB=PC+PB由于两点之间线段最短,所以B、P、C共线时PA+PB达到最小值.
过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴AN=A′N,∵∠AMN=30°,∴∠A′ON=60°
设圆O的半径为R则BC=2R则PB=PC+BC=4+2R因PA切圆O于A则AP²=PC·PB36=4×(4+2R)R=5/2再问:再答:设圆O的半径为R∵AP切圆O于A∴AP²=P
(1)证明:如图,连接AC,∵点A是弧BC的中点,∴∠ABC=∠ACB,又∵∠ACB=∠ADB,∴∠ABC=∠ADB.又∵∠BAE=∠BAE,∴△ABE∽△ABD;(2)∵AE=2,ED=4,∴AD=
已知,AB为圆O的直径,以A为圆心,以AO为半径画弧,交圆O于C,D两点,试证明三角形BCD是等边三角形证明:连接AC、AD、OC、OD因为:AC=AD=OC=OD,所以△OAC、△OAD都是等边三角
解题思路:连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的
作AA'⊥MN交圆O于A',连接BA'交MN与P,则此处PA+PB=BA'最小;因B是AN弧的中点,所以BNA'弧等于ANA'弧所对圆心角的¾倍=(π/3)*(3/4)=π/4;又圆O的半径
:如图所示:因为AD切圆o于点A,而AB是圆的直径 所以AB⊥AD &n