如图在abcd中ae,bf,cm,dn分别
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:45:56
解∵在正方形ABCD中∠ABE=∠BCF=90°AB=BC,又∵AE=BF∴AE^2-AB^2=BF^2-BC^2,∴BE^2=CF^2∴BE=CF∴△ABE≌△BCF(SSS)∴∠BAG=∠CBH∵
在正方形ABCD中∠ABE=∠ABO+∠2=90°∵AE⊥BF∴∠AOB=90°∴∠1+∠ABO=90°∴∠1=∠2(同角的余角相等)
证明:∵AE平分∠BAD,BF平分∠ABC∴∠DAE=∠BAE,∠ABF=∠CBF∵平行四边形ABCD∴AD∥BC∴∠BEA=∠DAE,∠AFB=∠CBF∴∠BAE=∠BEA,∠AFB=∠ABF∴BE
∵在△ABE和△CBF中AB=BC,AE=CF,BE=BF所以△ABE全等于△CBF(SSS)所以∠ABE=∠FBC因为,∠ABC=90°所以∠ABE+∠EBC=90°因为∠ABE=∠FBC所以∠FB
在平行四边形ABCD中AD=BC且AD//BCE,F分别为AD,BC中点AE=AD/2BF=BC/2AE=BF且AE//BFAE:BF=EG:BG有BG=EG同理得EH=CH即G,H分别为BE,CE的
∠ADC=∠ADB=90°,∠CAD=90°-∠C=20°;∠AOB=∠OAF+∠OFA=(∠OAD+∠DAF)+(∠FBC+∠C)=(1/2)∠BAD+20°+(1/2)∠ABC+70°=90°+(
∵四边形ABCD为正方形∴AB=CD=CB=AD,∠D=∠DAB=90°又因为CE=DF所以CD-CE=AD-DF即DE=AF在△EDA与△FAB中DE=AF∠D=∠DABAD=BA所以△EDA≌△F
证明:∵正方形ABCD∴AB=AD,∠BAD=∠ABC=90∴∠BAF+∠AFB=90∵AE=BF∴△ABF≌△DAE(SAS)∴∠DEA=∠AFB∴∠BAF+∠DEA=90∴∠AGE=180-(∠B
题目有问题,假设F与D重合,那么,E与O重合,EO为0,FO是BD的一半,FO不等于EO.所以题中给出的命题必须限定点F的位置,即FC必须是个特殊值,但显然题目并没有给出这个条件.【美丽心情】团队,真
(1)无论E.F点在何位置上,要证明AE=BF,即证明三角形AFB=三角形ADE由于角ADC和角ABC都是直角,加上AD=AB所以只要证明角DAE=角ABF即可有因为AE垂直于BF所以角FAE=角AB
延长BF交DC于点O,因为在平行四边形ABCD中AEBFCFDE为角平分线,则角CFB等于90度,三角形ADE和三角形CFB全等,所以DE等于FB,角CFO也等于90度,所以CF为三角形CBO的垂直平
延AC,BF交于G点.∵∠CAE+∠AEC=∠EBF+∠BEF=90º∴∠CAE=∠EBF∵∠ACB=∠BCG=90°,AC=BC∴⊿ACE≌⊿BCG∴AE=BG∵∠GAF=∠BAF,∠AF
(1)方法一:如图①,∵在▱ABCD中,AD∥BC,∴∠DAB+∠ABC=180°.(1分)∵AE、BF分别平分∠DAB和∠ABC,∴∠DAB=2∠BAE,∠ABC=2∠ABF.(2分)∴2∠BAE+
通过角边角定理得到△DAE与△BCF全等,所以DE=BF,M、N分别是DE、BF中点,所以ME=NF,而DF平行且等于BE,得出四边形DFBE为平行四边形,得到ME与NF平行,所以ME平行且等于NF,
在矩形ABCD中,因为AB||DC所以角BAE=角DEA因为角D=角BFA=90度所以三角形ABF相似于三角形EAD所以AE:AB=AD:BF所以AE*BF=AD*AB所以AE*AE*BF=AE*AD
证明:延长EA至H,使AH==CF,∵AB=BC,∠HAB=∠FCB=90°∴△HAB≌△FCB∴∠AHB=∠CFB∠ABH=∠FBC∵∠CFB+∠FBC=90°∠ABF+∠FBC=90°∴∠CFB=
因为AE=CG,所以DE=BG,又BF=DH,所以三角形DEH和BGF全等,那么角DHE=BFG,所以EH平行于FG,又EH=FG(三角形全等),所以四边形EHGF是平行四边形,则对角HEF=HGF
证明:∵四边形ABCD是正方形,AE⊥BF,∴∠DAE+∠AED=90°,∠DAE+∠AFB=90°,∴∠AED=∠AFB,又∵AD=AB,∠BAD=∠D,∴△AED≌△ABF,∴AE=BF.