如图在abc中d是bc中点,ED垂直于BC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 18:03:59
如图在abc中d是bc中点,ED垂直于BC
已知,如图在三角形ABC中,AH垂直BC于点H,D,E,F分别是BC,AC,AB的中点.

根据三角形中位线定理,DF=1/2AC,DE=1/2AB,在直角三角形AHC中,HE是斜边中线,HE=1/2AC,同理,FH=1/2AB,DF=HE,DE=FH,FE是公共边三角形DEF全等于三角形H

如图:在锐角三角形ABC中,AD⊥BC于D,E,F,G分别是AC,AB,BC的中点,求证:四边形DEFG是等腰梯形

∵E,F,G分别是AC,AB,BC的中点∴EF、FG分别的△ABC中位线∴EF∥BCFG=1/2AC∴四边形DEFG是梯形∵AD⊥BCE是Rt△ACD斜边AC的中点∴DE=1/2AC∴FG=DE∴四边

如图在三角形abc中,d是bc边上的一点e是ad的中点af平行bc,af等于dc

(1)AE=ED,AF∥BC,∴AF/BD=AE/ED=1,∴AF=BD,又AF=DC,∴BD=DC,即D是BC的中点.(2)四边形ADCF是矩形.事实上,AF∥=DC,∴四边形ADCF是平行四边形,

如图,在三角形ABC中,D,E分别是BC,AD的中点,且三角形ABE的面积是1.求三角形ABC的面积.

∵D为BC中点,∴SΔABC=2SΔABD,∵E为AD中点,∴SΔABD=2SΔABE,∴SΔABC=4SΔABE=4.

如图,在△ABC中,D,E分别是BC,AD的中点,且△ABE的面积是1,求△ABC的面积

 文档里有图片 :△ABE的面积是1, E分别是AD的中点, 那么△ABD的面积是2  同样△ABD的面积是2  ,&n

如图 在△ABC中,AD⊥BC于点D 点E,F,G 分别是AC,AB,BC的中点 求证.FG=DE

证明:三角形ADC为直角三角形,且E为斜边上的中点,所以2ED=AC,F,G分别是AC,AB,BC的中点,所以2FG=AC,所以ED=FG

如图,在锐角三角形ABC中,AD垂直BC于D,E,G分别是AC,AB,BC的中点,求证:四边形DEFG是等腰梯形.

∵F,E是AB,AC的中点∴FE//BC∵G,F是BC,AB的中点∴2FG=AC∵AD⊥BC,E是AC的中点∴DE是Rt△ADC斜边AC上的中线∴2DE=AC∴FG=DE∴四边形DEFG是等腰梯形

如图 在△ABC中,AD⊥BC于点D,点E,F,G分别是AC,AB,BC的中点,求证FG=DE.

因为F、G为中点,所以FG//AC,且FG=1/2AC.因为AD⊥BC,E为斜边AC的中点,所以DE=1/2AC.所以FG=DE.

如图在△ABC中,AH垂直于BC于点A,D,E,F分别是BC,AC,AB的中点,则图中有那几个平行四边形

根据三角线中位线平行且等于第三边的一半可得四边形CEFD,BDEF,AFDE是平行四边形若三角形是直角三角形AC⊥BC,EF交AH于G则四边形GHDF,GHCE也是平行四边形(矩形)

如图在△ABC中,AH垂直于BC于点H,D,E,F分别是BC,AC,AB的中点,则图中有那几个平行四边形

确实只有三个平行四边形:分别是四边形AFDE,四边形BDEF,四边形EFDC.AH⊥BC这个条件不能产生新的平行四边形,它是为另外的问题做准备的.通常的另外一个问题是求证四边形DFEH是等腰梯形,那就

如图,在三角形ABC中,点D、E在边BC上,角CAE=角B,E是CD的中点,且AD平分角BAE.

延长AE至点F,使得AE=EF.连结CF.由CE=ED,AE=EF知,△ADE≌△FCE(S,A,S).故得DA=CF,

如图 三角形ABC中 点D在AC边上 BD=BC E是CD的中点 F是AB的中点 求证 EF=1/

图能大些马再问:再答:֤������Ϊ��db��bc���ԣ������dbc�ǵ�������Ρ���Ϊ����e��cd���е㣬���ԣ�be��ֱ��ac����������εױߵ����ߴ

已知如图在△ABC中,D、F、E分别是各边中点,AH是边BC上的高.

E、F是所在边中点,所以EF//BC三角形AHB是直角三角形且F是AC中点,则FH=1/2AB=FB又D、E是所在边中点,所以DE=1/2AB且DE//FB所以DE=HF且DE不平行于FH由DE不平行

如图,在三角形ABC中,AD垂直BC于D,E,F,G分别是BC,CA,AB的中点.求证:四边形是等腰梯形

证明:首先ED//与FG,故DFGE是一个梯形,腰为EG、DF,因为EG为中位线,所以EG为AC之半所以EG=FA,又AD垂直BC,所以直角三角形ADC中,DF为斜边AC上的中线,因此为AC之半,即D

如图,已知在等腰△ABC中,D是底边BC的中点,DE⊥AC于E,F是DE的中点,求证AF⊥BE

证:连结AD,BE,AD,BE交于点O       ∵∠ADE+∠EDC=90°    &

已知;如图;在三角形ABC中,D是BC的中点,E是AD的中点,F是BE延长线与AC交点,DG是三角形BCF

证明:1.证明AF=1/2FC在△BCF中∵DG为中位线∴CG=FGBF∥DG在△ADG中∵EF∥DG∴AF:FG=AE:ED∵E是AD中点∴AE=ED∴AF=FG∴AF=FG=CG∴AF=1/2FC

如图,在三角形ABC中,角ACB=90,AC=BC=8,M是AB中点,D,E分别是BC,AC 上的

等边所以角a=b=45,ema+dme+dmb=18dme=45,所以ema+dmb=135.角a+ema+aem=180所以ema+aem=135所以aem=dem,a=b,am=mb角角边得出三角

已知,如图,在△ABC中,点D是BC的中点,点E事BD的中点,AB=BD,求证:∠CAD=∠EAD

如图作AF//=DC,得◇ABDF,所以△AED≌△ADG再问:跟我的不一样,不过还是谢谢了再答:你的是什么?