如图在△abc中ab=ac∠bac=90°an为过点a的任一直线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:01:25
过A作∠CAB的角平分线,交BC于D,过D作DE⊥AB于E∵∠BAC=2∠B∴∠CAD=∠DAB=∠B在△DAE和△DBE中∠DAE=∠B,∠DEA=∠DEB=90°,DE=DE∴△DAE≌
∠PCA=120°-α,60°
分析:证明两个三角形全等,一般就是找到相同的角和边.证明:△ABC中,AB=AC,则有∠B=∠C∵∠DEC=∠DAE+∠ADE∠ADB=∠DAE+∠C∠ADE=∠B=∠C∴∠DEC=∠ADB在△ADB
1、等边△AEF证明:∵AB=AC,∠B=30∴∠C=∠B=30∵EA⊥AB∴∠AEB+∠B=90∴∠AEB=90-∠B=60∵FA⊥AC∴∠AFC+∠C=90∴∠AFC=90-∠C=60∴等边△AE
∵∠ACD=∠B∠BAC=∠CAD∴△ACD∽△ABC∵AD²=AE·AC即AD/AE=AC/AD∠DAE=∠CAD∴△ADE∽△ACD∴△ADE∽△ABC∴S△ADE/S△ABC=(DE/
1)这条直线通过顶点A,那么设这条直线为AD交BC于D设∠B=∠BAD=∠C=x∠CAD=∠CDA=∠B+∠BAD=2x∠CAD+∠CDA+∠C=5x=180x=36度,∠BAC=3x=108°,∠B
证明:如图,作线段AB的垂直平分线,垂足为D,且与BC相交于点E,易证△AED≌△BED.∴AD=12AB=12×2AC=AC,∠B=∠EAD.∵∠BAC=2∠B,∠EAD+∠EAC=∠BAC,∴∠E
证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中AB=AC∠BAD=∠CADAD=AD,∴△ABD≌△ACD.
解三角形常用到余弦定理和正弦定理,可以利用已知的边和角求出未知的边和角,其中余弦定理可以表示成BC^2=AB^2+AC^2-2AB*AC*cosA,正弦定理表示成a/sinA=b/sinB=c/sin
作高AD,设BD=x,因为在直角三角形ABD中,∠B=60°,所以∠DAB=30°,所以AB=2x,AD=√3X,在直角三角形ACD中,∠CAD=75°,所以∠CAD=75-30=45°,所以CD=A
图中的P点应为D点.证明:在AB上取一点E,使得AE=AC,连接ED. 很容易证明△AED全等△ACD 所以有AB-AE=BE,DE=DC 在△BDE中:BE>BD-DE(两边之差小于第三
证明:(1)∵∠A=∠A,∠ACD=∠B,∴△ADC∽△ACB,∵ADAC=ACAB,∵AD2=AE•AC∴ADAC=AEAD,∴ACAB=AEAD,∴DE∥BC;(2)∵DE∥BC,∴△ADE∽△A
角A是公共角又ACD=B所以ACD和ABD是相似三角形AC/AB=AD/AC即AC/8=2/ACAC=4
连接BM,由△ABC是等腰直角三角形,∠ABM=∠ACB=45°,又M是AC的中点,∴BM=1/2AC=CM,∵CE=BD,∴CME≌BMD∴ME=MD,∠CME=∠DMB则∠CME+∠BME=∠DM
证明:∵∠B+∠BAD=∠1+∠EDC,又∵∠B=∠1,∴∠BAD=∠EDC.又AB=AC,∴∠B=∠C.又AD=DE,∴ADB≌△DEC.
在AC上取一点E,使AE=AB,就可以证明ABD和AED全等.所以BD=ED,根据AC=AB+BD所以ED=EC,所以可以得到三角形EDC那两个底角相等,再根据外角的关系就可以得到了再问:点E是否要与
连接AE和AG∵∠BAC=120°,AB=AC∴∠B=∠C=30°∵D是AB的中点,且DE⊥AB;F是AC的中点,且GF⊥AC∴DE是AB的中垂线,GF是AC的中垂线∴BE=AE,AG=CG∴∠B=∠
10°设∠B度数为X,AB=AC.∠C也为X∠DAE=180-2X-20因为AD=AE,∠AED=(180-∠DAE)/2=X+10∠AED是三角形ECD的外角,∠AED=∠CDE+∠C即∠CDE+X
几年级的?再问:八年级再问:我已经会了
做辅助线BD垂直于AC于D,∠A=30°,则BD=6/2=3S=3*6/2=9