如图在三角形abc中ch是外角角acd的的平分线,bh是角abc的角平分线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:10:31
如图在三角形abc中ch是外角角acd的的平分线,bh是角abc的角平分线
已知如图,在三角形abc中,o是三角形abc两个外角的平分线的交点,求证:点o在角a的平分线上

证明:作OD⊥AB于D,OE⊥CB于E,OF⊥AC于F.∵∠OBC=∠OBD∠OCB=∠OCF∴OD=OEOE=OF∴OD=OE∴点o在角a的平分线上

如图,在三角形ABC中,BD、CD是内角开分线,BP、CP分别是角ABC和角ACB的外角平分线,

根据内角平分线可推得∠BDC=90°+1/2∠A当∠A=30°时∠BDC=90°+15°=105°根据内外角平分线可推得∠BDC=90°+1/2∠A∠BPC=90°-1/2∠A两式相加得∠BDC+∠B

已知:如图,在三角形abc中,e是角bac、外角cbd的平分线的交点.求证,点e在外角bcf的平分线上.

过E作EG⊥AD交AD于点G,作EH⊥AC交AC于点H,作EI⊥BC交BC于点I,AE平分∠CAB,EG=EH,BE平分∠CBD,EG=EI,在RT△EHC与RT△EIC中,EH=EI,EC=EC,R

已知,如图,在三角形abc中,e是角bac、外角cbd的平分线的交点.求证:点e在外角bcf的平分线上

过E作EG⊥AD交AD于点G,作EH⊥AC交AC于点H,作EI⊥BC交BC于点I,AE平分∠CAB,——》EG=EH,BE平分∠CBD,——》EG=EI,在RT△EHC与RT△EIC中,EH=EI,E

已知,如图,在三角形ABC中,E是角BAC、外角CBD的平分线的交点.求证点E在外角BCF的平分线上

如上图角平分线的性质可知三红线相等,于是推得CE为平分线.

已知 如图,在三角形ABC中,E是角BAC,外角CBD的角平分线的交点,求证,点E在外角BVF的角平分线上.

作EG垂直AB交AB于G,EH垂直BC于H点,EK垂直AC于K,∠1=∠2,EK=EG,∠3=∠4,EG=EH,∴EH=EK,∴点E在外角BVF的角平分线上再问:谢谢了再问:太给力了,你的回答完美解决

如图,在三角形ABC中,E是角BAC,外角CBD的平分线的交点.求证:点E在外角BCF的平分线上.如果要添线要加图.

如图,连接EC,过E点分别做AF,BC,AB的垂线,垂足分别是F,D,G因为E在角CAB的平分线上,所以EF=EG同理,ED=EG,     所以EF

如图,在三角形ABC中,CH是外角角ACD的平线,BH是角ABC的平分线.

步骤不繁不简.看懂为原则.钱就算了.不选我我鄙视你

如图 ce是三角形abc的外角

该题运用的思想是:三角形的两个内角之和,等于第三个角的外角证明:角BAC大于角B因为CE为角ACE的平分线所以角ACE等于等于角ECD由此可得:角B+角BAC=角ACD=角ACE+角ECD角BAC=角

已知,如图CE是三角形ABC的外角

证明:∵CE是∠ACD的平分线∴∠ACE=∠ECD∠ECD是△BCE的外角∴∠ECD=∠E+∠EBC∴∠ECD>∠EBC∴∠ACE>∠EBC即:∠EBC<∠ACE

已知如图,在△ABC中,CH是外角∠ACD的角平分线,BH是∠ABC的平分线,∠A=58°,求∠H的度数.

∵∠A=58°,∴∠ABC+∠ACB=180°-∠A=180°-58°=122°…①,∵BH是∠ABC的平分线,∴∠HBC=12∠ABC,∵∠ACD是△ABC的外角,CH是外角∠ACD的角平分线,∴∠

如图在△abc中,ch是外角∠acd的平分线,bh是∠abc的平分线,∠a=58°,求∠h的度数.

BH与CA相交于O点.构成两个对顶三角形.所以∠H+∠2=∠1+∠A三角形BCH中,∠2为外角.所以∠2=∠1+∠H两个等式相减得∠H=∠1+∠A-∠1-∠H2∠H=∠A∠H=58/2=29°

如图在三角形abc中,bd和CD别是三角形abc的外角.

要过程吗再答:由题可知设∠ACB为x°,所以∠ABC=180-40-xEBC=40+xFCB=40+180-40-x所以DBC+DCB=EBC/2+FCB/2所以DBC+DCB=(40+x)/2+(4

已知如图,在△ABC中,CH是外角∠ACD的平分线,BH是∠ABC的平分线.

证明:∵∠ACD是△ABC的一个外角,∴∠ACD=∠ABC+∠A,∵∠2是△BCH的一个外角,∴∠2=∠1+∠H,∵CH是外角∠ACD的平分线,BH是∠ABC的平分线,∴∠1=12∠ABC,∠2=12

如图,在三角形abc中,外角角acd的平分线

(1)∠ACD=∠A+∠ABC∠BCA1=∠ACD/2+∠BCA=∠A/2+∠ABC/2+∠BCA∠A1=180°-∠ABC/2-∠BCA1=∠A+∠ABC+∠BCA-∠ABC/2-(∠A/2+∠AB