如图在三角形abc中∠c=90度,DE为ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:00:23
如图在三角形abc中∠c=90度,DE为ab
.如图在rt三角形abc中 c 90度 AC=2 CB=3..

1、BC垂直于EF,BC垂直于AC,所以EF//AC,因为AE//CF.SO,EACF是平行四边形.Y=X*2.2、AB=√13,如果四面行EACF能为菱形,则EB/AB=DB/BC,得BD=3-6/

如图,RT三角形ABC中,角C=90,

证明:因∠CAD=∠BAE,∠C=∠ABE=90°故△ACD∽△ABE故AC/AB=CD/BE即AB*CD=AC*BE因∠EBF+∠ABC=90°=∠ABC+∠BAC故∠EBF=∠BAC又∠F=∠C故

如图,在三角形ABC中,角C=90度,角CAB=60度

由题意可知BD=2DE=10cmCD=DE=5cm所以BC=CD+BD=5+10=15cm

如图,在Rt三角形ABC中,∠C=90°,AB=5,三角形ABC的周长为12,求三角形ABC的面积

设两条直角边为a,b则:a^2+b^2=25a+b=7所以a^2+b^2+2ab=4925+2ab=492ab=241/2ab=6所以△ABC的面积=6

已知如图,在三角形ABC中,∠ACB=90°,将三角形ABC绕点C按顺时针方向旋转得三角形A'B

这图只有几粒米大.也无法放大.重新上传大一点图,亲

如图12,在直角三角形ABC中,𠃋C=90度,AC=6,将三角形ABC沿CB向右平移得到三角形DEF,若

图形平移后是一个平行四边形,用平行四边形的面积来底乘高3乘6=18

如图在rt三角形abc中,角c=90度,ab等于10厘米.

题目:如图,在RT△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s..同时点Q从点B出发沿B-C-A方向向点A运动,速度为2cm/s,

如图,在Rt三角形ABC中,角C=90度,CB=CA

∠C=90°CB=CA=a勾股定理AB=√(a²+a²)=√2a

如图在RT三角形ABC中,∠C=90,∠A=30,BC和AB的关系

作角ABD=30度,D在AB上则三角形ACD是等腰三角形所以AD=CD角ADC=180-30-30=120度所以角CDB=60度而角B=180-90-30=60度素三角形BCD是等边三角形所以CD=B

一道初二的几何题{如图,在三角形ABC中,角C=90度……}

∵DE垂直平分AB∴AD=BD∵CD﹕BD=3﹕5∴CD﹕AD=3﹕5∴CD﹕(15‐CD)=3﹕5∴CD=45∕8

如图在三角形ABC中,角C=90°,角A=22.5°.

连接BF,根据图可解∵∠A=22.5°且EF为垂直平分线,∴得∠A=∠FBA=22.5°,∠FBC=45°又∵∠C=90°,且∠CBF=∠CFB=45°∴BF=√2FC又∵BF=AF∴AF=√2FC分

如图,在三角形ABC中,AE平分∠BAC,∠C>∠E.

1、证明:∵∠BAC=180-(∠B+∠C),AE平分∠BAC∴∠CAE=∠BAC/2=90-(∠B+∠C)/2∵AD⊥BC∴∠CAD=90-∠C∴∠EAD=∠CAD-∠CAE=90-(∠B+∠C)-

如图,在三角形ABC中,∠C=90°,AM是三角形ABC中线,MN⊥AB于N.求证:AN²=BN²+

由题意可知△ANM△ACM△MNB为直角三角形,由勾股定理则有:AN²+MN²=AM^2=AC²+CM²①BM²=MN²+BN²②

如图 在Rt三角形ABC中 ∠C=90度,BC=根号3,三角形ABC的面积为3,求AC及AB的长

∵∠C=90°∴S△ABC=BC×AC又∵S△ABC=3,BC=根号3∴AC=3×2÷根号3=2根号3由勾股定理可得:AB=根号[(2根号3)²+(根号3)²]=根号15即AC=2

已知如图,在三角形ABC中,∠C=90º,BC=6,AC=8;在三角形ABD中,BD=24,AD=26

根据勾股定理,可求得AB=10因为AB²+BD²=AD²所以△ABD是直角三角形,∠ABD=90°斜边的中线为斜边的一半所以,BE=13

已知;如图,在三角形abc中,角c=90度,求证,点abc在同一个圆上

取AB中点E,连接EC∵E为AB中点且△ABC为直角三角形∴AE=BE=1/2AB,CE=1/2AB(直角三角形斜边上的中线等于斜边的一半)∴AE=BE=CE∴A,B,C三点在以E为圆心的圆上

已知:如图,在三角形abc中,角c=90度,ab的垂直平分线

已知:如图,在三角形ABCc中,∠C=90度,AB的垂直平分线交BCc于D,如果∠CAD:∠DAB=1:2,求∠B的度数∵DE垂直平分AB∴∠B=∠DAB∵∠CAD:∠DAB=1:2∠CAD+∠DAB