如图在三角形abc中点o
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 07:48:38
直角三角形斜边上的中线等于斜边的一半,用这一个结论就可以证明你的两个问题.这个结论无需再证明.第一个问题,CO为直角三角形ACB斜边AB的中线,故CO=AB/2=AO=BO,则证明O到A、B、C,3点
∵∠BOA=∠COD,BO=OD,AO=OC∴⊿AOB≌⊿COD∴∠BAO=∠DCO∴AB∥CD∴∠ABC+∠BCD=180°∴∠ABC=90°∴∠BCD=90°∴⊿BCD是直角三角形
△OMN是等腰直角三角形∵△ABC是等腰直角三角形,O是BC中点∴∠B=∠OAN=45°,AO=BO,AO⊥BC∵BM=AN∴△OBM≌△OAN∴OM=ON,∠BOM=∠AON∵∠BOM+∠AOM=9
OED周长=10因为OE=BEOF=FC又因为BE+EF+FC=BC=10所以OE+EF+FC=BC=10(这道题是利用角平分线使被平分的两个角相等然后平行使角ABO与另一个角BOE相等又因为角ABO
连接od交bc于点E,应为D是弧BC的中点所以od垂直bc,所以角deb等于90,应为ab是直径所以角acb为90,所以bc为4根号2,od垂直bc所以be等于2根号2,三角形obe相似三角形abco
相切的.依题三角形ABC为等腰三角形,则AO垂直于BC,所以三角形AOB和AOC及圆O关于AO对称,所以相切
连接AO在三角形ABO,ACO中DF,EG分别是中位线,各自都平行等于AO的一半所以DF平行等于EG所以四边形DFGE是平行四边形
(1)由ACAB=2,得到AC=2AB,再由O为AC的中点,得到AC=2OC,可得出AB=OC,由∠BAC=90°,AD⊥BC,利用同角的余角相等得到一对角相等,再利用外角性质得出一对角相等,利用AA
连接AO∵△ABC是等腰直角三角形,O是BC的中点∴∠BAO=∠B=45°,AO=BO∵BM=AN∴△BOM≌△AON∴OM=ON∠BOM=∠AON∵∠BOM+∠AOM=90°∴∠AON+∠AOM=9
在△ABC中,因为D、E分别是AB、AC的中点,所以DE∥BC,且DE=1/2BC在△OBC中因为G、H分别是OB、OC的中点,所以GH∥BC,且GH=1/2BC所以DE∥GH,且DE=GH所以四边形
(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;
应该是点E是弧BC的中点连接OE交BC与点F∵E是弧BC的中点,OE是半径∴OE⊥BC∵AD⊥于BC∴AD∥OE∴∠OEA=∠EAD∵OE=OA(半径)∴∠EAO=∠OEA=∠EAD即∠EAO=∠EA
(1)连接OF∵CD是直径∴CD过O点∴CO=OF=1/2CD在RT△ABC中∵D是AB中点∴CD=AC=DB=1/2AB∴CO:CD=OF:DB=1/2又∵∠OFD=∠ODF=∠DBC∴OF//AB
证明:连接DF,可以判定角AFC=90°(直径CD所对应的圆周角为90度),所以角AFC=角C=90°.所以DF平行AC,又因为D为AB的中点,可以判定DF为三角形ABC的中位线,所以F为BC的中点.
连接OD,∵AD是⊙O的切线,∴OD⊥AC,过O作OE⊥AB,垂足为E,又AC=AB,∴∠∠C=∠B,点O是BC的中点,∴OC=OB,∴⊿OCD≌⊿OBE﹙AAS﹚,∴OE=OD,又OE⊥AB,∴AB
(1)连接DF因为DC是圆的直径,F在圆上所以角DFC=90度所以DF垂直BD所以三角形BDF相似于三角形BAC所以BF:BC=BD:BA因为D是AB中点所以F是BC中点(2)连接DE,GF按(1)的
证明:(1)连接DE、DF依题意可知,CD、EF为圆O的直径.有:∠ECF=∠CFD=∠FDE=∠DEF=90°且有CD=EF所以四边形ECFD为矩形,有DF=EC∠DFB=∠ECF=90°有因为点D
连结PA,PB,PC.若sin角BPC=24\25,求tan角PAB的值?
连接OD,因为D是弧BC的中点,所以OD垂直于BC,又因为AE垂直于BC,所以OD平行于AE,所以∠ODA=∠DAE因为OD=OA,所以∠ODA=∠OAD所以∠OAD=∠DAE所以AD平分角OAE