如图在圆o中AB垂直CD,DE垂直BC求证DE=2分之一AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:21:48
证:设M为CD中点连接OM,则OM垂直于CD(垂弦定理)又因为CE垂直于CD,DF垂直于CD所以CE平行于OM平行于DF(在同一平面内,垂直于同一直线的两条直线相互平行)又因为M为CD中点(已设)所以
你把CO延长交圆于F连接EFEO那么角COE等于角OEF+OFE三角形OEF等腰,证明这俩弧所对应的圆心角等于圆周角的二倍就好,下面你自己好好想想,好好学习,多注意休息,欢迎提问
因为AD垂直AB所以EDA=BAD=90°又因为EDA是等腰直角三角形作CE垂直AB于E所以BE=AB-AE=AB-CD=2又因为BEC是等腰直角三角形所以CE=根号2所以AD=CE=根号2所以三角形
证明圆的切线的方法:⑴、圆心到直线的距离等于半径;⑵、过半径外端且垂直于半径.此题可用第二种方法解决,即:证明DE⊥OD.证法如下:连结OD,所以AD⊥BC,由于AB=AC,利用等腰三角形的“三线合一
∠EDC=∠CDFDE平行于BC=>∠EDC=∠DCF所以:∠DCF=∠CDF=>DF=CF又因为AD=AC,公共边AF所以:△ADF全等于△ACF=>∠DAF=∠CAFAF是等腰三角形ADC底边上的
证明:因为AB=CDOM垂直于AB,ON垂直于CD所以OM=ON∠AMO=∠CNO=90°∠OMN=∠ONM∠OMN+∠AMO=∠ONM+∠CNO即∠AMN=∠CNM
(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.
证明:∵DE⊥AC,DF⊥BC∴∠CED=∠CFD=90∵CD=CD,DE=DF∴△CED≌△CFD(HL)∴∠ACD=∠BCD∵CD⊥AB∴∠ADC=∠BDC=90∵CD=CD∴△ACD≌△BCD(
连接BC,因为AB=CD,所以AB对应的弧AB=CD对应的弧CD,弧AD是公共弧,所以:弧AB-弧AD=弧CD-弧AD即:弧BD=弧AC所以:弧BD对应的弦BD=弧AC对应的弦AC即:BD=AC又因为
1CA乘CE与CB乘CF相等根据射影定理CA乘CE=CD^2=CB乘CF2DE垂直AC,DF垂直BCDCEF四点共圆OC*OD=OE*OF
证明:连接AC和BD.∵弦CD垂直于直径AB,∴BC=BD.(5分)∴∠BCD=∠BDC.∵OA=OC,∴∠OCA=∠OAC.∵∠BDC=∠OAC,∴∠BCD=∠OCA.∴△BCD∽△OCA.∴CBC
证明:连接CO并延长交圆O于M.CM为直径,则角CBM=90度,得:角BCM+角M=90度;连接AC,则角CAB=角M,即:角BCM+角CAB=90度;又AB垂直CD,则:角ACD+角CAB=90度.
证明过C、O两点作直径CF,连接BF,DF∵OE⊥BC∴CE=BE∴OE是△CBF的中位线∴OE=1/2BF∵CF是直径∴∠CDF=90°∴AB‖DF∴弧AF=弧DF∴弧AD=弧BF∴AD=BF∴OE
连接直线BD和BE.因为AE为直径,所以角ABE为直角.又因为AB垂直与CD,所以CD平行与BE,所以角BDC=角DBE.所以弧BC=弧DE.
连接AO,OE=OD-ED=5-2=3AO=1/2CD=5在直角三角形AOE中根据勾股定理得到AE=4则AB=2AE=8
图呢?设AC交BD于F∠B=∠C,∠A=∠D,∠AFB=∠DFC,则△ABF全等△DCF,AB=CD,过圆心垂直弦的线段即平分该弦,故:AE=BE,∠ABO=45度,故△OEA为等腰直角三角形,OE=
做辅助线,连接OA=OB=OC=OD,因为AB大于CD,所以角OAB和角OBA小于角OCD和角ODC,所以OE小于OF.
①OE=OF,因为OA=OB=OD=OC且∠AOB=∠COD所以△AOB与△DOC全等垂线也相等②AB=CD弧AB=弧CD∠AOB=∠COD,因为圆中任意与圆点距离相等的弦的长度都相等,弦相等弧一定相