如图在圆o中弧ab与弧ac相等 角acb=60度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:05:22
∵AB=AC∴∠ABC=∠C=2∠A∵∠ABC+∠A+∠C=180°∴5∠A=180°∠A=36°∠ABC=∠C=23A=72°∵BC是圆的切线∴∠CBD=∠B=36°∴∠ABD=∠ABC-∠CBD=
(1)∠AOC=π/3×R/R=π/3(2)∵∠AOC=π/3,OA=OC,∴△AOC是等边三角形,∠CAO=π/3由△AEC≌△DEO,得∠CAE=∠ODE∴AC//OD,∴∠DOB=∠CAO=π/
)∵AC^=π/3R,半圆的长是πR,∴弧AC是半圆是1/3,即弧的度数是60°,∴∠AOC=60°;
我不知道你的图在那里告诉你一个方法,你试一下.连接OAOBOCOD先证明三角形OAB和三角形OCD的面积相等.再证明AB=CD这样O到弦AB,CD的距离就相等了(三角形OAB的面积*2=AB*O到弦A
连接OA,OB,OC,OD做OM垂直AB与M,延长交CD于N点因为AB//CD有ON垂直CD易得角AOM=角BOM角CON=角DON所以角AOC=角BOD等角对等弧所以弧AC=弧BD
相切的.依题三角形ABC为等腰三角形,则AO垂直于BC,所以三角形AOB和AOC及圆O关于AO对称,所以相切
BD与圆O相切证明:连结ODOA=OD∴∠A=∠ODA∵∠CBD=∠A∴∠ODA=∠CBD∵∠CDB+∠CBD=90°∴∠CDB+∠ODA=90°∴∠ODB=90°∵OD是圆O的半径∴DB与圆O相切2
连接OC,OD∵CE=OE∴△CEO为等腰三角形,∴∠COE=∠OCE∠CEO=180°-2∠COE∵∠CEO+∠OED=180°∴∠OED=2∠COE又∵OC,OD半径∴∠OCE=∠ODE∴∠ODE
OB=OC证明如下:∵AB=AC∴∠ABC=∠ACB又∵BD、CE是角平分线∴∠DBC=∠ECB∴OB=OC.
第一题的(1)看圆心角,先证弧AB=弧CD,然后各减一个弧BC(2)如果弧AC=弧BD,则OM=ON,共用OE边,易证三角形OME与三角形ONE全等第二题割线定理AE*BE=CE*DE,因为AE=DE
平行设od垂直平分bc于eoa=obeb=ec所以平行
因为AB=AC,所以∠ABC=∠ACB因为BD,CE平分∠ABC,∠ACB,所以∠DBC=二分之一∠ABC,∠ECB=二分之一∠ACB所以∠DBC=∠ECB所以OB=OC(2)AF⊥BCAF平分∠BA
∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD
OD⊥BC,OE⊥AC,得到BC=2DC,AC=2EC(垂直于弦的直径平分该弦)在直角△ODC和直角△OEC中斜边OC=OC(共用),直角边OE=OE,则直角△ODC≌直角△OEC对应边DC=EC∴B
作DE⊥AB于E,CF⊥AB于F得矩形DEFC,所以CF=DE由△ADB是等腰直角三角形,得DE1/2*AB所以CF=DE=1/2*AB=1/2*AC因为AD⊥BD有△ACF是直角三角形RT△ACF中
连结PA,PB,PC.若sin角BPC=24\25,求tan角PAB的值?
AC与BD相等.理由如下:∵AB=DC,∴弧AB=弧CD,∴弧AB+弧BC=弧BC+弧CD,即弧AC=弧BD,∴AC=BD.
相等证明:连接BO、CO∵AB=AC,AO=AO,BO=CA∴△ABO全等于△ACO∴∠BAD=∠CAD又∵AD=AD,AB=AC∴△ABD全等于△ACD∴BD=CD
容易推得△AEO相似△ACB又因为BC=5AC=12得AB=13设半径为xAO=AC-CO=12-x由相似得OE/BC=AO/ABx/5=(12-x)/1313x=60-5x18x=60x=10/3即