如图在圆柱下底面圆周的点A处
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:58:09
利用展开图,根据题意可得:BC=2π≈6cm,AC=6cm,AB=BC2+AC2=62(cm),答:需要爬行的最短路程是62cm.
作OA的平行线O1C连结CACB然后三角形ACB是直角三角形AB=2√6
分析:(I)根据AE⊥底面BEFC,可得AE⊥BC,而AB⊥BC,又AE∩AB=A满足线面垂直的判定定理所需条件,则BC⊥面ABE,根据线面垂直的性质可知BC⊥BE;(II)根据题意可知四边形EFBC
将圆柱侧面展开,是个长方形长方形的长就是圆柱的底面周长10厘米,宽就是高13厘米.所以最近的距离就是展开这个长方形的对角线,也就是a到b的连线等于根号内(13的平方+10的平方)=根号269
(1)证明:易知AP⊥BP,又由AA1⊥平面PAB,得AA1⊥BP,(2分)从而BP⊥平面PAA1,故BP⊥A1P;(5分)(2)延长PO交圆O于点Q,连接BQ,A1Q,则BQ∥AP,得∠A1BQ或它
(1)证明:∵C是底面圆周上异于A、B的任意一点,且AB是圆柱底面圆的直径,∴BC⊥AC.∵AA1⊥平面ABC,BC⊈平面ABC,∴AA1⊥BC.∵AA1∩AC=A,AA1⊊平
将圆柱侧面展开,是个长方形长方形的长就是圆柱的底面周长10厘米,宽就是高13厘米.所以最近的距离就是展开这个长方形的对角线,也就是a到b的连线等于根号内(13的平方+10的平方)=根号269再问:我们
把圆柱侧面展开来成矩形,两点之间距离最短.
展开圆柱的半个侧面是矩形,矩形的长是圆柱的底面周长的一半,即3π≈9,矩形的宽是圆柱的高12.根据两点之间线段最短,知最短路程是矩形的对角线的长,即122+92=15厘米.故答案为:15.
把圆柱沿高线切一刀展开相当于一个长方形高是12cm,底面半径是3cm可得长方形的长为圆柱的底面周长=2πr=2*3*3=18cm(题目里π取3)长方形的宽为圆柱的高=12cm所以AB距离为图中所画的对
设a点到圆心的距离为x,2-x就是a点到园边上的最近距离,8+2*(2-x)就是它从a点到b点的最短路程高改成7cm底面半径改成8cm,后一样,7+2*(8-x)应该就是这样
展开成长方形,那么AC=pi*r=3pi,又有AB=15,由勾股定理,bc=跟号(15^2-9*pi^2)再问:得数再答:12
圆柱展开图为长方形,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πrcm,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理得AB=122+(3π)2=122+92=225=15
圆柱的4个点(左上,右上,右下,左下)依次为,DBCA延边缘剪开可得一个长方型,在RTADB中因为DB=18(等于2分之1圆柱底部的周长)AD=24根据勾股定理AB=30CM所以最短路程为60cm再问
把圆柱题侧面展开成矩形,两点之间线段最短,会了吧孩子
最短路程就是取A.B点加外圆点上的矩形:就是2个半径加一个高就可以了3+3+12=18
把圆柱体沿着AC直线剪开,得到矩形如下:则AB的长度为所求的最短距离,根据题意圆柱的高为10cm,底面半径为4cm,则可以知道AC=10cm,BC=12底面周长,∵底面周长为2πr=2×π×4=8πc
如上侧面展开图底面周长=πr=3.14x20=62.8cmAB=√(30²+62.8²)=69.6cm