如图在平行四边形中 F是AD中单,延长BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 09:01:46
证明:∵ABCD是平行四边形∴AD=BC,AD//BC∵E,F分别是边AD,BC的中点∴ED=½AD,BF=½BC∴ED=BF,且ED//BF∴四边形BFDE是平行四边形∴EB=D
ABCD是平行四边形;所以AD平行BC;所以AF平行BC;所以AEF相似于BEC;所以AE:AB=EF:FCE是AB延长线和CF延长线焦点;AE平行CD;所以AEF相似于CFD;所以AF:FD=EF:
解题思路:四边形解题过程:你好,你的题目吧完整,请补充后,老师再给你解答最终答案:略
在△MBF和△MEA中:∵AD∥BC∴∠MBF=∠MEA,∠MFB=∠MAE又E、F分别是AD、BC的中点∴BF=EA∴△MBF≌△MEA∴BM=ME同理:CN=NE∴MN是△EBC的中位线∴MN∥B
△BCQ中,CD:CQ=BE:BQ又BE=DF,所以CD:CQ=FD:BQ相似三角形PFB和PDQ中,PD:PQ=PF:PB=(PD+PF):(PQ+PB)=FD:BQ所以,CD:CQ=PD:PQ
在平行四边形ABCD中AD=BC且AD//BCE,F分别为AD,BC中点AE=AD/2BF=BC/2AE=BF且AE//BFAE:BF=EG:BG有BG=EG同理得EH=CH即G,H分别为BE,CE的
证明:∵四边形ABCD是平行四边形∴AD=BC,AD//BC∵E,F分别是BC,AD的中点∴AF=BE=FD=EC在△AGF与△EGB中∠GAF=∠GEB,∠GFA=∠GBE,AF=BE=1/2AD∴
在三角形中,中线将三角形分为面积相等的两部分,因为的面积为3,所以△CED的面积是6,△ACD的面积是12,对角线将平行四边形的面积分成相等的两部分,即,平行四边形的面积就是24.
:连接EF,在平行四边形ABCD中,AD=BC,AD‖BC,∵AF=BE,∴DF=EC,∴四边形ABEF和ECDF都是平行四边形,∴EG=AG,EH=HD,∴GH是ΔEAD的中位线,∴GH‖BC,GH
∵在平行四边形ABCD中,点E,F分别是AD,BC上的点∴AD∥BC,即DE∥BF,且BC=AD又∵AE=CF∴ED=BF∴四边形BEDF是平行四边形
(1)因为E,F分别是BC,AD的中点所以2EC=BC,2AF=AD又因为AD,BC平行且相等所以EC,AF平行且相等所以四边形AECF是平行四边形(2)(题目出错了吧,应该是是说明四边形ABEF是菱
都成立,1和2都有AF平行且等于EC,一对边平行且相等;3是因为AF平行于EC,AE平行于FC,两对边平行
∵DE是∠ADC的角平分线∴∠ADE=∠EDF∵AE//DF∴∠AED=∠EDF∴∠ADE=∠AED∴AD=AE∴平行四边形ADFE是菱形∵∠A=60°连结DE∴△ADE和△DEF是等边三角形∵AD=
∵四边形ABCD为平行四边形∴AD=BC且平行∵DF,BE分别平分∠CDA,∠CBA∴∠1=∠2∠3=∠4∵AD平行BC∴∠2=∠DFC∠4=∠AEB∴∠1=∠DFC∠3=∠AEB∴CD=CFAB=A
添加的条件是AF=CE.理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.故答案为:AF=CE.
四边形AECF是平行四边形证明:作AM⊥BC于M,FN⊥BC于N∵四边形ABCD是平行四边形∴AD//BC∴AM=FN(平行线间的距离相等)∵AE=FC∴Rt△AME≌Rt△FNC(HL)∴∠AEM=
图虽然不太一样,但答案不变.⑴能AD/AB=DE/BFRt⊿ADE、Rt⊿AFB,具有相同的顶角∠A,∴Rt⊿ADE∽Rt⊿AFB∴AD/AB=DE/BF⑵ABCD的面积S=10*2.5=25另一方面
四边形AECF是平行四边形,理由:∵在▱ABCD中,∠BAD=∠DCB,又∵∠1=∠2,∠3=∠4∴∠2=∠3,∵在▱ABCD中,AD∥BC,∴∠3=∠5,∠2=∠6,∴∠3=∠6∴AE∥CF,又∵A
/>1)∵平行四边形ABCD的面积=AB*DE=AD*BF=BC*BF∴AB:BC=BF:DE2)AB:BC=BF:DE即10:BC=5:2.5∴BC=10*2.5/5=5再问:看不懂、、、诶、、能不
AD平行且等于DC所以DE平行DF点E,F分别是AD,BC的中点所以DE=DFDE平行且等于DF四边形BFDE是平行四边形