如图在平面直角坐标系中o为原点圆c的圆心坐标为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:47:42
如图在平面直角坐标系中o为原点圆c的圆心坐标为
已知:如图,在直角梯形COAB中,OC‖AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别是

OD=√65得OM=3.2BD=5S△DOP=(BD-BP)*OM/2S=[5-(t-18)]*3.2/2S=-1.6t+36.818≤t≤23若能满足P点(8,p)Q点(q,0)存在QP所在的直线∥

如图,在平面直角坐标系xOy中,直线AB过点A(-4,0),B(0,4)圆O的半径为1(O为坐标原点)

提示:连接OQ,OP;则OP²=OQ²+PQ²=1+PQ²即PQ=√﹙OP²-1﹚当PO取到最小值时PQ有最小值,于是作OC⊥AB于C;AB=√﹙OA

如图6,在平面直角坐标系中,O为坐标原点,二次函数 下面接着说

因为第一题你会做,所以我只做了第二题希望你能看明白,过程及图都在下面的链接里面http://hi.baidu.com/%B1%E0%BC%AD5211/album/item/09c0b2cb8243b

特殊三角形——已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形

1、t=2OP=2P坐标(0,2),D坐标(5,0)设PD方程:y=kx+b代入:b=2,5k+2=0,k=-2/5∴直线PD的函数解析式:y=-2/5x+22、找O关于CB直线的对称点O′(8,0)

如图,在平面直角坐标系中,O为坐标原点,

(1)有两个答案M1(1,0)M2(4,0)(2)实在是很麻烦或者说我不会所以就...

如图,在平面直角坐标系xOy中,直角梯形OABC的顶点O为坐标原点,顶点A,C分别在x轴.

∵BC⊥OC,AO⊥OC且DB⊥DE∴△BCD∽△DOEOE/OD=CD/CB∴OE=1即E(1,0) y=-x²+6x-5对称轴为x=3作BH⊥x轴于H,故M在BH上 

如图,在平面直角坐标系中,点P从原点O出发

这题吗?如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长得速度运动t秒(t大于0),抛物线y=x²+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B

如图,在平面直角坐标系中,以坐标原点O为圆心2为半径画圆O,

如图,设∠COB=α,OB=2/cosα.OA=2/sinα.AB=OA×OB/OC=4/[2sinαcosα]=4/sin2α.当α=45°时,AB有最小值4.

如图,在平面直角坐标系中,O为原点,A点坐标为(-8,0),B点坐标为(2,0),C点坐标为(0,-4)

(1)设y=a(x+8)(x-2)将C点坐标为(0,-4)带入得a=4分之1所以y=4分之1x^2+4分之6x-4(2)由题知M(-3,4分之25)

22.如图,在直角坐标系中,O为坐标原点.已知反比例函数

设l的解析式为y=kx,p点坐标为(x,kx),则由图像的对称性可知q点坐标为(-x,-kx)p、q的距离=2x*sqrt(k^2+1)因为y=kx=1/x所以x=sqrt(1/k)p、q的距离=2s

求大神,如图,在平面直角坐标系中,o为原点,向量OA=(cosα,sinα),o°

(1)由向量OA=(cosα,sinα),得A点的坐标为A(cosα,sinα).|向量AB|=√[√3-cosα)^2+(0-sinα)^2].=√(3-2√3cosα+cos^2α+sin^2α)

在平面直角坐标系xOy中,O为坐标原点

(1)cosa=5/6sina=根号11//6向量OP=(5/6,根号11//6)向量PA=(11/30,-根号11/6)向量PA*向量PO=(5/6)*(11/30)+(根号11/6)*(-根号11

如图1,在平面直角坐标系中,O为坐标原点,边长为5的正三角形OAB的OA边在X轴的正半轴上.

如下图所示;1;做BF垂直于OA,由几何知识知道,BF垂直平分OA,即OF=FA=OA/2=OB/2=OC/2.当0<t<5∕2时,即C,D分别在OF,OB上变化时,有;∵∠A=∠A,OC/OD=1t

如图,在直角梯形COAB中,CB//OA,以O为原点建立平面直角坐标系,A(10,0),C(0,8),CB=4,

2.作OF⊥AB于F,BE⊥OA于E,DH⊥AB于H则BE=OC=8∵AE=OA-BC=10-4=6∴AB=根号(BE^2+AE^2)=10∴AB=OA,∵OA•BE=AB•O

如图 在平面直角坐标系中 点o为坐标原点,点A的坐标为(16,12),点B的坐标为(21,0)

我做了一半.要去看电影了等会回来来回答.再问:�õ�再答:���廹�Ǻܻ��һ���⡣

如图,在直角梯形COAB中,OC平行AB,以O为原点建立平面直角坐标系A,B,C三点的坐标分别为

OD=√65得OM=3.2BD=5S△DOP=(BD-BP)*OM/2S=[5-(t-18)]*3.2/2S=-1.6t+36.818≤t≤23若能满足P点(8,p)Q点(q,0)存在QP所在的直线∥