如图在平面直角坐标系中双曲线y x分之k上有一点A(-2,2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:51:21
如图在平面直角坐标系中双曲线y x分之k上有一点A(-2,2)
(2013•湖州二模)如图,在平面直角坐标系中,直线y=kx和双曲线y=k′x在第一象限相交于点A(1,2),点B在y轴

(1)把A(1,2)代入y=kx和y=k′x,得K=2,k´=2∴直线y=kx的函数关系式是y=2x双曲线y=k′x的函数关系式是y=2x,(2)∵AB=1,OB=2,OP=t∴PC=t2,PD=2t

如图,在平面直角坐标系中,反比例函数y=m/x(x

1.将A(-1,4)代入y=m/x得m=-42.=,=,=,相交3,D(0,-4/a),E(-1,-4/a),由AD=BC,用勾股定理可以求出a=-2,b=2,此时直线AB为y=2x+6

如图,在平面直角坐标系xOy中,直线y=2x+n与x轴、y轴分别交于点A、B,与双曲线y=4x在第一象限内交于点C(1,

(1)把C(1,m)代入y=4x中得m=41,解得m=4,∴C点坐标为(1,4),把C(1,4)代入y=2x+n得4=2×1+n,解得n=2;(2)∵对于y=2x+2,令x=3,则y=2×3+2=8,

如图在平面直角坐标系中

从D作AB的垂线,交AB于M,∴DM=y-1,BC=4,MB=1-x,AM=-7-x∴37=(4+y-1)×(1-x)÷2-(-7-x)×(y-1)÷2化简得到:2x-4y+39=0又2x+5y=22

如图,在平面直角坐标系中,过原点O的两条直线AB、PQ交双曲线y=12/x于A、B、P、Q四点

(1)①直线AB,PQ,和双曲线都关于原点对称,通过图形的对称性,可知A,B和P,Q均关于原点对称.所以OA=OB,OP=OQ.现在可以得到四边形AQBP为平行四边形.只要再证明OA=OP,即得证.由

如图,在平面直角坐标系xoy中,一次函数y=k1x+b 如图,在平面直角坐标系x...

1、将A(1,4)带入Y=K2/x得4=K2/1==》K2=4得Y=4/x将B(3,m),带入Y=4/x得M=4/3即B(3,4/3)将A,B两点坐标带入y=k1x+b得4=K1+B和4/3=3K1+

如图 在平面直角坐标系中 已知抛物线y=ax^+2x+3(a

写大概思路行吗?4题都要写?再问:第四题再答:ED的长度为Y,可是DE怎么表示?不妨看成ED=EN-DN,ON一段是X也是E点的横坐标。先看EN是在一元二次函数上的一点,那我可以带进函数里,当ON为X

如图,在平面直角坐标系中,双曲线y=kx过点A(-4,1),过点P是与点A不重合的双曲线上任一动点,过点A和P分别向两坐

(1)将点A坐标(-4,1)代入y=kx,得k=-4.∴双曲线解析式为y=-4x.∴S矩形ABCO=S矩形PDOE=|k|=4.又∵S△ADC=12S矩形ABCO,S△PDC=12S矩形PDOE,∴S

如图,在平面直角坐标系中,双曲线y=kx与直线y=34x交于点A、B,且OA=5.

(1)∵k>0,且OA与OB是对称的,∴OB=5,联立方程:y=kx与y=34x,解得:A,B坐标分别为:(23k3,3k2),(-23k3,-3k2),由OA=5得:129k2+34k2=25,解得

在平面直角坐标系xOy中,双曲线x

MFd=e=2,d为点M到右准线x=1的距离,则d=2,∴MF=4.故答案为4

如图在平面直角坐标系xoy中一次函数y

Rt△AOD中,∠AOE的对边是DA,斜边OA.所以,sin∠AOE=DA/OA再问:用的是什么理论,我好像从未接触过再答:这不是理论,就是三角函数中正弦函数的定义。再问:能否用更简单的回答来解决这类

如图,在平面直角坐标系中,

(2).a你做错了当0≤x≤5时P(5-x,0)Q不变(0,10+x)5≤x≤10时P(x-5,0)Q(0,10+x)b.△APQ在运动过程中,其面积始终是AP×OQ/2∵△APQ的面积为32平方单位

如图,在平面直角坐标系中,点A为y轴正半轴上的一动点

设A(0,a),a>0,则B(-1/a,a),C(k/a,a)OB的方程:y=[a/(-1/a)]x=-a²x令x=k/a,y=-ka,D(k/a,-ka)反比例函数:y=-k²/

(2014•沐川县二模)如图,在平面直角坐标系xOy中,已知直线l:y=-x-1,双曲线y=1x

当a1=2时,B1的纵坐标为12,B1的纵坐标和A2的纵坐标相同,则A2的横坐标为a2=-32,A2的横坐标和B2的横坐标相同,则B2的纵坐标为b2=-23,B2的纵坐标和A3的纵坐标相同,则A3的横

如图在平面直角坐标系中,AB交y轴雨点C,连接OB

(1)△AOB=(2+2)×4-4×4÷2-4×2÷2=4设oc为x,则C(0,x)△AOB=△ACO+△BCO从而求出OC的长度为2;C(0,2)(3)设NP、BM重合于点G.叫NMB为X.则①∠M

如图,在平面直角坐标系中,AB交Y轴于点C,连接OB

(1)点C坐标为(0,2),△AOB面积为4.(2)(∠BDA-∠BAD)÷∠BOC=2.(3)∠BNP=75°.我想答案就是这样子了.由于没有图,所以你可以带进去验算一下是不是,又:问一句你几年级了

如图在平面直角坐标系xOy中,已知点A(3,0)和B(0,4),线段AB与双曲线y=m/x

解:由题可知.设y=kxb,则将A(3,0),B(0,4)代入,解得:y=-4/3x4.∵当m/x=-4/3x4时,由题可知:Δ=0∴解得:m=3.∵y=m/x(x>0)与y=n/x(x

如图,在平面直角坐标系中,

解题思路:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,PA.分别求出PD、DC,相加即可.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.