如图在正方形abcd中m为ab的中点n为ad上一点且an等于4分之1ad
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:51:50
1)取AD中点F,连结MF,由MN⊥DM得∠DMN=90°,∠NMB+∠AMD=∠ADM+∠AMD=90º∠NMB=∠FDM(∠ADM和∠FDM是指的同一个角)∵∠DFM=∠A+∠AMF=9
证明:(1)如图,连接BC1交B1C于点O,则O是BC1的中点,又因为M 是AB的中点,连接OM,则OM∥AC1.因为OM⊂平面B1MC,AC1⊄平面B1MC,所以AC1∥平面B1MC.(2
由N往AE引垂线NF,交AE于F∵DM⊥MN∴∠NME+∠AMD=90°∴∠NME=∠ADM在△ADM与△FMN中∵DM=MN,∠ADM=∠FMN,∠DAM=∠MFN=90°∴△ADM≌△FMN∴AM
将三角形DCN绕点D顺时针旋转,使得CD与AD重合.设点N的新位置为点P.因为角A+角C=180度,所以P在直线AB上.三角形DMN与三角形DMP全等(三边对应相等),所以角MDN是角ADC的一半.(
以A为坐标原点,以AB方向为x轴正方向,以AD方向为y轴方向建立坐标系,则AM=(2,1)设N点坐标为(x,y),则 AN=(x,y),则0≤x≤2,0≤y≤2令Z=AM•AN=2x+y.将
(1)CD⊥ADP∴CD⊥APEF∥=AP/2﹙中位线﹚∴EF⊥CD⑵设PD=1取坐标系D﹙000﹚A﹙100﹚C﹙010﹚P﹙001﹚设G﹙a,0,b﹚∈PAD则F﹙1/2,1/2,1/2﹚GF=﹛
设⊙O与CD相切于点T连OT则OT⊥DC,AD‖DC,OM=OB∴DT=CT=1/2DC=3 ,DC^2=DM×DA , 3^3=DM×6 ∴DN=3/2&nb
证明:延长CF,交DA的延长线于点P∵F是AB的中点,E是BC的中点∴BF=CE∵BC=CD,∠B=∠DCE=90°∴△BCF≌△CDE∴∠BCF=∠CDE∴∠CMD=90°∵∠P=∠BCF∴△APF
(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C
延长CE交DA延长线于G,可以证明三角形DCF、CBE、GAE全等,得角G=CDF所以角G+GDM=90度,故角GMD=90度,AG=ADAM是中线,AM=AG=AD
十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P
⑴ T是CD中点,OT∥EC﹙中位线﹚TM∥CB﹙TC∥=MB MBCT是平行四边形﹚ ∴平面OTM∥平面BCF  
延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B
图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB
证明:(1)如图,连接DN,∵四边形ABCD是正方形,∴DN⊥AC∵DF⊥平面ABCD,AC⊂平面ABCD,∴DF⊥AC又DN∩DF=D,∴AC⊥平面DNF∵GN⊂平面DNF,∴GN⊥AC(2)取DC
(1)因PA垂直底面ABCD,所以PA垂直BD又因底面ABCD为正方形,所以BD垂直ACPA、AC是在平面PAC内因此BD垂直平面PAC(2)45度PA垂直底面ABCD角PAD为90度又因PA=AB,
连接BA1,A1NBA1//EM,A1C1//EC所以面BA1NF//EMC因为面BFN属于面BA1NF所以平面CEN//平面BFN
看不清图再问:再答:再问:EF//AB再答:��再答:再答:��������
设AC、DM的交点是P,因为AM//DC,所以角PDC=角PMA,角DCP=角MAP,所以三角形DPC相似于三角形MPA所以它们的高之比h1:h2=1:2设正方形的边长为a,h1=1/3a,h2=2/