如图在正方形abcd中m是ab的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:49:59
证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE
由N往AE引垂线NF,交AE于F∵DM⊥MN∴∠NME+∠AMD=90°∴∠NME=∠ADM在△ADM与△FMN中∵DM=MN,∠ADM=∠FMN,∠DAM=∠MFN=90°∴△ADM≌△FMN∴AM
以A为坐标原点,以AB方向为x轴正方向,以AD方向为y轴方向建立坐标系,则AM=(2,1)设N点坐标为(x,y),则 AN=(x,y),则0≤x≤2,0≤y≤2令Z=AM•AN=2x+y.将
EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9
如图,DG/EC=4/1 ∴FM/FC=3/5 设AF=a 则FM=3a/√5 cos∠AFM=-1
十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P
(1)在AD上截取AK=AM,则K为AD中点,连接KM,下面证明三角形KMD和BNM是全等的:角BMN+角AMD=90度,角BMN+角ADM=90度,故角BMN=角ADM;角DKM=180-45=13
(1)∵D1D⊥平面ABCD,BD是D1B在底面ABCD上的射影,∴∠D1BD是直线D1B与平面ABCD所成的角,在直角三角形D1BD中,BD=2,D1D=2,则tan∠D1BD=D1DBD=1,∴∠
证明:(1)如图,连接DN,∵四边形ABCD是正方形,∴DN⊥AC∵DF⊥平面ABCD,AC⊂平面ABCD,∴DF⊥AC又DN∩DF=D,∴AC⊥平面DNF∵GN⊂平面DNF,∴GN⊥AC(2)取DC
证明:∵四边形ABCD是正方形∴OA=OB,∠BAM=∠CBN=45°∵MN‖AB∴OM=ON∴AM=BN∵AB=BC∴△ABM≌△CBN∴BM=CN
过点N作NE⊥AB于E易得△DAM∽△MEN所以NE/ME=AM/AD因为BN是平分角CBE,所以NE=BE可设NE=a、BE=a、BM=b、AM=c,则AD=AM+BM=b+c所以a/(b+c)=c
连接BD交AC于O,则OB=ODOB=ODDM=MSSB∥MOMO∈平面ACM所以SB∥平面ACM过M作MH∥SA交AD于H,则MH⊥平面DAC过H作HF∥BD交AC于E,则HF⊥AC,连接ME则角M
过N点做NG垂直BE所以角BMN与角MNG互余因为角A是直角所以角ADM与角AMD互余因为MN垂直MD所以角AMD与角BMN互余所以角ADM与角GMN相等(1)所以三角型DAM与三角型MNG相似所以A
ABCD面积为1PAB面积为0.5PAD面积为0.5PB=√2AC=√2PC=√3PBC是直角三角形同理PCD也是直角三角形面积为0.5√2四棱锥表面积为2+√2
连接BA1,A1NBA1//EM,A1C1//EC所以面BA1NF//EMC因为面BFN属于面BA1NF所以平面CEN//平面BFN
参考:延长AB和DN相交于点平P..先证△NBP≌△NCD,再证明MP=MD,从而∠MDP=∠P=∠CDN.
设AC、DM的交点是P,因为AM//DC,所以角PDC=角PMA,角DCP=角MAP,所以三角形DPC相似于三角形MPA所以它们的高之比h1:h2=1:2设正方形的边长为a,h1=1/3a,h2=2/
目测三角法,现行送上(O为CE,BF交点)修正完整版再问:这个题是初二初三的题,有没有容易理解的解法?比如说图形法,反证法等,谢谢再答:当然有,只是习惯了用计算,懒得添辅助线延长BF交AB于H可以证明
在AD上截取中点F,连接MF∵正方形ABCD中,M是AB的中点∴DF=MB=MA∴ΔMFD≌ΔMBN∴MD=MN