如图在正方形abcd中p是cd边上的一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:11:14
不妨设正方形ABCD的边长为4,则有:AD=4,DQ=2,CP=1.1)在△ADQ和△QCP中,∠ADQ=90°=∠QCP,AD/CQ=2=DQ/CP,所以,△ADQ∽△QCP.2)因为,△ADQ∽△
证明(1)连接AC交BD于O,连接OE∵ABCD是正方形∴OC=OA∵E是PC中点∴EC=EP∴OE||PA∵OE在面EDB内∴PA//平面EDB(2)∵ABCD是正方形∴BC⊥CD∵PD⊥底面ABC
相似,设正方形边长为a,因为P是BC上的点,且BP=3PC;所以PC=1/4a,又因为Q是CD的中点,所以DQ=QC=1/2a;所以AP=5/4a,AQ=√5/2a,PQ=√5/4a;所以,AP:AQ
4QC=AB∵四边形为正方形∴∠D=∠C=90°∵PQ⊥AP∴∠APQ=90°∴∠APD+∠CPQ=90°∵∠DAP+∠APD+90°∴∠CPQ=∠DAP同理,∠APD=∠PQC∴△APD与三角形PQ
因为ABCD是正方形,Q是CD的中点,则有:角ADQ=角QCP=90度----------1QC=DC/2=AD/2,即AD:QC=2----------2又因BP=3PC,则有PC=BC/4=DC/
问题是求证△ADQ∽△QCP?∵BP=3PC,∴PC=BC/4又ABCD为正方形,∴AB=BC=CD=DA∴PC=DA/4=CD/4又Q是CD中点,∴DQ=CQ=AB/2=BC/2=CD/2=DA/2
分两种情况:①如图(1),∵∠BPE=90°,∴∠BPC+∠DPE=90°,又∠BPC+∠PBC=90°,∴∠PBC=∠DPE,又∠C=∠D=90°,∴△BPC∽△PED.如图(2),同理可证△BPC
证明:连接PQ,并延长交AD延长线于点M因为AD//BC所以∠M=∠QPC因为QC=QD,∠PQC=∠MQD所以△CPQ全等于△DMQ(角角边)所以QP=MQ,CP=DM因为AP=PC+CD,而CD=
延长DC至F, 使CD=CF∵AP=PC+CD ∴AP=PF ∴∠1=∠2∵ABCD是正方形 ∴AB//=CD ∠1=∠3∴△ABE≌△FCE∴BE=
取CP的中点O,连DO,BO.因为PC=PD=CD=2,所以三角形PCD是等边三角形,DO重直于CP.又平面PCD垂直于平面ABCD,所以DO在平面ABCD上的投影在CD上.由BC垂直于CD,所以有D
S三角形ADQ+S三角形ABP=S三角形APQ做AE等于AQ,延长CB到点E.因为正方形,所以AB=AD,∠D=∠ABP=90°,因为∠PAQ=45°,所以∠DAQ+∠BAP=45°在Rt△AEB与R
证明:延长CD到点E,使DE=BP连接AE则△ADE≌△ABP(SAS)∴AE=AP,∠DAE=∠BAP∵∠DAB=90°,∠PAQ=45°∴∠BAP+∠DAQ=45°∴∠EAQ=45°=∠PAQ∵A
因为ABCD为正方形,所以AB=AD,∠BAD=∠BAE+FAD=90度.因为DE⊥AP,垂足分别为E、F,所以∠AFD=AEB=90度,所以∠FDA+∠FAD=90度.所以∠ADF=∠BAE.因为∠
∵ABCD为正方形【特殊平行四边形】CD∥AB∴∠DPF=∠PAB∴∠D=90°AD=AB∵BE⊥APDF⊥AP∴∠DFP=∠AEB=90°∴∠DEP-∠DPE=∠AEB-∠PAB即∠CDF=∠ABE
延长FE交CB的延长线与点H
证明:如图,延长AQ交BC的延长线于E,∵四边形ABCD是正方形,∴AD=CD,AD∥BE;∵Q是CD的中点,∴△ADQ与△ECQ关于点Q成中心对称,∴AD=CE,∠1=∠E;∵AP=PC+CD,∴A
igxiong008是对的~
设正方形的边长为1,OD=x则有OC=1-x,OB=1+x三角形OBC中,由勾股定理有 OB^2=OC^2+BC^2所以 (1+x)^2=(1-x)^2+1^2得x=1/4所以OC
设PC=X,则正方形ABCD边长为4X,∴CQ=DQ=2X,∴PC/DQ=CQ*QD=1/2,又∠C=∠D,∴ΔCPQ∽ΔDQA,∴∠PQC=∠DAQ,∵∠DAQ+∠DQA=90°,∴∠PQC+∠DQ