如图在直角坐标系xoy中直径为十的圆e交x轴于点a负二零点b四零
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:15:33
(1)作EF⊥x轴,交x轴于点F,连接EA,(1分)∵A、B的坐标分别为(-4,0)、(2,0),∴AB=6,OA=2,(2分)∴AF=3,∴OF=1,(3分)∵⊙E的直径为10,∴半径EA=5,∴E
1.(-2,2)2.-1,0.53.1.5,-0.25
如图,在平面直角坐标系xoy中,AB在x轴上,AB=10,以AB为直径的⊙O'与y轴正半轴交于点C,连接BC,AC.CD是⊙O'的切线,AD丄CD于点D,tan∠CAD=12,抛物线y=ax2+bx+
是此题吧如果本题有什么不明白可以追问,如果满意记得采纳再问:第三问的详细过程
过点C作CD垂直于CA交抛物线与点D,连接AC,AD设∠CAD=45°因为角ACD=90°∴△ACD是等腰直角三角形∴CD=AC=根号(5-3)²+6²=2根号10过点C作CF垂直
如图,延长BC交x轴于点F,连接OB,AF,DF,CE,DF和CE相交于点N,∵O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).∴四边形OABF为矩形,四边形CDE
解(1)设抛物线的解析为y=a(x-1)(x-5),把A(0,4)代入,解得a=4/5,抛物线的解析式为y=4(x-1)(x-5)/5=4(x-3)^2/5-16/5,抛物线的对称轴x=3.(2)点P
再问:不好意思啊,图不一样,坐标也不一样再答:(1)作EF⊥x轴,交x轴于点F,连接EA∵A、B的坐标分别为(-4,0)、(2,0)∴AB=6,OA=4,∴AF=3,∴OF=1∵⊙E的直径为10∴半径
∵∠M=∠PGA=90°,∠MON=∠AOG,∴ΔOGA∽ΔOMN,∴GA/MN=OG/OM,GA/2=2/4,GA=1,∴A(1,2),Y=K/X过A(1,2),∴双曲线解析式Y=2/X,当X=4时
图呢,把图弄上来过A作AE⊥x轴于E,AF⊥CD于F,则AECF是矩形AE∥DC,A是OD的中点得E为OC的中点同理F为DC的中点有OE=1/2OCAE=CF=1/2DCA点坐标(3/2,2)反比例函
(1)cosa=5/6sina=根号11//6向量OP=(5/6,根号11//6)向量PA=(11/30,-根号11/6)向量PA*向量PO=(5/6)*(11/30)+(根号11/6)*(-根号11
解题思路:(I)先将圆C1,直线C2化成直角坐标方程,再联立方程组解出它们交点的直角坐标,最后化成极坐标即可;(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),从而直线PQ的直角坐标方程
1:连接CM,A、M点坐标知道,AM=2,CM=AM=2,O(0,0)坐标原点,推出:OM=1,利用勾股定理:CO平方+OM平方=CM平方推出:OC=根号下3,则C(0,根号下3)我不能打符号,自己打
设AB中点为M,(-2+4)/2=1,则M的坐标为(1,0),可知点E的横坐标为1,AM=2+1=3,连接EA,EM,由圆的性质可知EM垂直于AB,有勾股定理知EM²=EA²-AM
OA=OD=AD/sqrt(2),D(0,2sqrt(2))如图,PED-PFA全等,PEOF为正方形,PO平分DOF当A接近O时,PE接近1/2AB,当A接近F时,PE接近PD,所有范围是1/2AD
直角坐标系xOy是指由x轴,y轴以及以它们的交点O为原点建立的坐标系.一般情况下,Ox是横轴,Oy是纵轴.
没图,我来试试.(1)A为(0,0),△ABC边长为2*sqr(3),BC∥x轴,则C应为(sqr(3),-3)(也可是(-sqr(3),-3),因为你没给图,我不知道B和C谁在左边,谁在右边,我姑且
(1)证明:连接O′C,∵CD是⊙O′的切线,∴O′C⊥CD,∵AD⊥CD,∴O′C∥AD,∴∠O′CA=∠CAD,∵O′A=O′C,∴∠CAB=∠O′CA,∴∠CAD=∠CAB;(2)①∵AB是⊙O