如图在矩形abcd中e是bc边上的点,连接be,作be的垂直平分线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:04:56
(1)菱形连接MN,由矩形对称性可知MN为其对称轴容易证明Rt△MNB≌Rt△MNC,且NE,NF是直角三角形斜边上的中线∴有ME=EN=NF=FM,∴四边形MENF是菱形(2)对角线相等的菱形是正方
做EG⊥AD于G∵ABCD是矩形∴∠DGE=∠B=90°……(1)∠BEG=90°∵EF⊥ED∴∠DEF=∠DEG+∠GEF=90°∠BEG=∠FEB+∠GEF=90°∴∠DEG=∠FEB……(2)∵
由EF=ED,EF⊥ED,得∠BEF+∠CED=90°,因∠CDE+∠CED=90°,所以∠BEF=∠CDE,所以△BFE≌△ECD,所以BE=CD=4,BF=CE=3,AF=1BE=AB,∠BAE=
再问:谢!!!帮大忙了
第一题:AE=3,因为⊿AEF≌⊿BCF,第2题AE=4.2,此时第一题⊿AEF≌⊿CGH,设AE=X,EF=√25+X平方,DE=10-X,又因为⊿DEH≌⊿BGH,DH=3,EH=√9+(10-X
由第一问可知△ABE∽△DCG,得到AB/BE=CG/CD,得到CG=1/2,那么EG=3/2,同理可以得到△EFG∽△DCG,得到EG/FG=DG/CG,在直角三角形CDG中,CD=1,CG=1/2
(1)∵矩形ABCD∴∠B=∠C=90°∵AF⊥DF∴∠GEF+∠EGF=90°∵∠DGC=∠EGF,∠AEB=∠GEF【也可用∠1∠2表示】∴∠DGC+∠AEB=90°∵∠BAE+∠AEB=90°∴
证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴AC=BD,∵EF为△ABD的中位线,∴EF=12BD,EF∥BD,又GH为△BCD的中位线,∴GH=12B
(1)三角形ABE相似于三角形ECD相似于三角形DEA因为矩形ABCD所以角C=角B=90度因为矩形ABCD所以AD//BC所以角ADE=角DEC,角DAE=角AEB因为AE⊥DF所以角AED=90度
因为AD=AE角DAE=角AEB(内错角)角DFA=角ABE=90所以三角形ABE全等于三角形ADF所以AB=DF又因为AB=CD所以DF=CD因为DE为公共边角DFE=角dce所以三角形DFE全等于
(2)拟用面积投影定理.求得:PD=AC=根号(20)=2根号5.AE=根号5,角PDC=90度.求得CE=根号(5+4)=3.在三角形AEC中,用余弦定理,得cos角EAC=[5+20-9]/[2*
∵ABCD是平行四边形∴AB=DC,AB∥DC∵BE=CF∴BE+EF=EF+CF即BF=CE∵AF=DE∴△ABF≌△DCE(SSS)∴∠B=∠C∵AB∥DC即∠B+∠C=180°∴∠B=∠C=90
证明:∵四边形ABCD是矩形,∴∠B=∠C=∠BAD=90°,AB=CD,∴∠BEF+∠BFE=90°.∵EF⊥ED,∴∠BEF+∠CED=90°.∴∠BFE=∠CED.∴∠BEF=∠EDC.在△EB
矩形相似可以得到AB/EC=BC/CDAB=CD=a,BC=b得EC=a^2/b对从图中可知道:EC=BC-BE=b-aa^2/b=b-a等式两边同除以b(a/b)^2=1-a/b解这个方程求出的那个
S矩形ABCD=3S矩形ECDF推出AF=2FD——(1)矩形ABCD~矩形ECDF且AB=2推出AF*FD=FE*FE=AB*AB=4(2)设FD=x,则由(1)得AF=2x未知数代入(2)中,2x
答案=12求解如下:答:因为:S矩形ABCD=9S矩形ECDF所以:AB*BC=9*EC*CD,又因为:AB=CD=2所以:BC=9EC(1)因为:矩形ABCD~矩形ECDF所以:AB/EC=BC/C
因为ABCD为平行四边形,所以AB=DC.因为BE=FC,所以BE+EF=CF+EF,即BF=EC因为在三角形ABC和三角形EDC中,AB=DCBF=ECAF=ED所以三角形ABF全等于DEC,角B=
因为∠BEF+∠CED=90°且∠CDE+∠CED=90°=>∠BEF=∠CDE又因为EF=ED且∠B=∠C=90°=>△DCE与△EBF全等设CD=x则BE=CD=x=>BC=x+2矩形ABCD的周
∠BEF=∠CDE∠B=∠CEF=ED△BEF≌△CDEBE=CDCD=ABBE=AB∠BAE=∠BEA=45°AE平分∠BAD