如图在菱形abcd中de等于ao

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 10:10:56
如图在菱形abcd中de等于ao
如图,在菱形ABCD中,角A=60度,对角线BD=4cm,求菱形的周长

设菱形的对角线AC、BD相交于O点则OB=BD/2=2cm,AC平分角A,则角OAB=30度,且BO垂直于OA所以:AB=2OB=2*2=4cm所以,菱形的周长=4AB=4*4cm=16cm

如图:菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a.求:

(1)连接BD,∵E是AB的中点,且DE⊥AB,∴AD=BD(等腰三角形三线合一逆定理)又∵AD=AB,∴△ABD是等边三角形,∴∠ABD=60°.∴∠ABC=120°(菱形的对角线互相垂直平分,且每

如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点E,交AB于点F,连接DE,则∠CDE等于(

如图,连接BE,在菱形ABCD中,∠BAC=12∠BAD=12×80°=40°,∵EF是AB的垂直平分线,∴AE=BE,∴∠ABE=∠BAC=40°,∵菱形ABCD的对边AD∥BC,∴∠ABC=180

如图,已知在菱形ABCD中.详见补充,

因为菱形ABCD所以AC,BD互相垂直平分且平分一组对角又ON⊥AD,OM⊥BC,OE⊥AB,OF⊥DC所以ON=OM=OE=OF(角平分线性质定理)

如图,在菱形ABCD中,∠A=72°,请用三种不同的方法将菱形ABCD分割成四个等腰三角形,标出必要的角度数.

如图所示:设计图案主要根据∠D=108°,由此得到∠A=72°,而108=3×36,72=2×36然后利用菱形的性质即可设计图案.

在菱形ABCD中,E是AB的中点,且DE垂直AB,AB等于4,求角ABC的度数,菱形ABCD的面积

连接BDDE⊥ABAD=DB]AD=BD而ABCD为菱形AD=AB综上ABD为等边三角形∠ABC=120°DE=2√3S=AB*DE=8√3

几道八下数学题如图,菱形ABCD中,DE⊥AB,垂足是E,DE=6,EB=2,则菱形ABCD的周长是----2.计算:3

一题一题打给你吧!第一个是DE⊥AB,△AED为直角三角形,DE/AD=sinA,AD=DE/sinA=6/(3/5)=10菱形ABCD的周长=10*4=40sinA表示直角三角形中A角的正弦值,即对

如图,在四边形ABCD中,角A等于角C等于90度,BF,DE分别平分角ABC角ADC,判断BF,DE是否

解因为角A=角C=90度所以角ADC+角ABC=360-90-90=180度因为BE、DF分别平分角ABC、角ADC所以角ADF=角FDE角FBE=角EBC所以角ADF+角EBA=180·0.5=90

如图,在菱形ABCD中,∠ABC=60º,DE∥AC交BC的延长线于点E,求证:DE=½BE

在菱形ABCD中因为∠ABC=60ºAB=BC所以AC=AB=BC=AD=CD又因为AC//DEAD//BE所以四边形ACED为平行四边形所以AD=CEDE=CA因为AD=BC=AC所以DE

如图,菱形ABCD中,∠A=60°,对角线BD=8,则菱形ABCD的周长等于______.

∵AB=AD,∠A=60°∴△ABD为等边三角形∴AB=BD=8∴菱形ABCD的周长为8×4=32,故答案为32.

在菱形ABCD中,角A等于60度,对角线BD=4,求菱形ABCD的周长

角A等于60度,AD=AB所以△ABD是正三角形AD=BD=AB=4所以菱形边长=4周长=16

如图,在菱形ABCD中,DE⊥BD交BC延长线语点E,求证:BC=CE

因为菱形ABCD所以AD平分∠ABC、∠ADC,∠ABC=∠ADCBC=CD所以∠DBC=∠BDC又因为BD⊥DE所以∠E=90-∠DBC∠EDC=90-∠BDC所以∠E=∠BDC所以CD=CE所以B

如图,在菱形ABCD中.

AD//BE,所以△AMD∽△EMB,从而BM/DM=BE/DA;而∠BAF=∠DAE,有公共角∠EAF,所以∠BAE=∠DAF,又∠ABE=∠ADF,AB=AD,所以△ABE≌△ADF,所以BE=D

已知:如图,在菱形ABCD中,DE垂直AB于E,BE=16cm,sinA=12/13.求此菱形的周长

设AE=5x㎝,因为sinA=12/13,所以AD=13x㎝由于是菱形,5x+16=13x解得x=2所以AD=26㎝C=4AD=104㎝

如图,在菱形ABCD中,AB⊥DE,且OA=DE,AD=8,求菱形ABCD的面积

∵形ABCD∴AC⊥BD,∠DAO=∠BAO∵AB⊥DE,OA=DE∴△DAO全等于△ADE∴∠ADE=∠DAO∴∠ADE+∠DAO+∠BAO=90∴∠ADE=∠DAO=∠BAO=30∴DE=AD×c

如图,在菱形ABCD中,点E,F为BC上两点,且BE=CF,AF=DE,求证四边形ABCD是正方形

如图,∵BE+CE=BCCF+BF=BCCF=BE∴BF=CE∵四边形ABCD为菱形∴AB=CD∵在△ABF和△DCE中AF=DEBF=CEAB=DC∴△ABF≌△DCE∴∠ABF=∠DCE∵在菱形A