如图在边长为4的正方形abcd中,e,f分别是cd,ad上的点,且ce=df
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:24:59
1.2.3.都正确1.作ER⊥CD于R,MS⊥BC于S易证Rt△EFR≌Rt△MGS∴EF=MG2.AE=√3EM=2FM=2MG=4∴FG=2√53.当E在A点时,P为正方形中心当E运动到B点时,P
再问:对称中心是什么?再答:
BEFC=(A+B)/2*(A-B)BEF=(A-B)*B/2BFG=(A+B)/2*B-A*B/2
这题是做对称点以AC为轴做点D的对称点F易证 点F与点B重合所以 DP = BP所以 DP + 
不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+
由△ADG面积为既是S正方形的一半又是长方形的一半,又S△ADG=4*4/2=8.故,长方形的长为8*2/5=3.2
当OE垂直AB或OE过B点时,易知阴影部分的面积=1/4a².作为一般情况,因OE与OG的移动情况完全相同,必有OH=OK,HB=KC,又OB=OC,所以△OHB≌△OKC,故二者面积相等.
设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2
(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C
(1)根据题意得:△CDE的面积为12a2;(2)根据题意得:△CDG的面积为12a(b-a)=12ab-12a2;(3)根据题意得:△CGE的面积为12b(b-a)=12b2-12ab;(4)根据题
1、P、Q相遇,说明两点走的路程相加是正方形的周长.即t+4*t=16,t=3.2s2、一次相遇是走过了一个正方形周长,4次相遇就是4个正方形的周长.即(1+a)*16=4*16,a=33、第2013
晕可以将oc连接,看不是分割成两部分了吗?由于o是正方形ABCD的对角线交点,设oe交bc于h,og交cd于j,obh等于ocj,那么图中阴影部等于三角形obc(即正方形ABCD的4分之一)啊懂了吧?
如图,⑴ E.F是CD,DA的中点,A1D⊥D1D FD⊥D1D A1D,FD共面,∴A1D∥=FDA1D1DF是矩形,A1F∥=D1
OA=OD=AD/sqrt(2),D(0,2sqrt(2))如图,PED-PFA全等,PEOF为正方形,PO平分DOF当A接近O时,PE接近1/2AB,当A接近F时,PE接近PD,所有范围是1/2AD
链接EN,设EN=x,则EN=AN=x,BN=12-x因为三角形ENB是直角三角形,所以5^2+(12-x)^2=x^2x=169/24由于AE是直角三角形ABE斜边,算出长度等于13,所以ON(O是
这样的正方形ABCD有无限多个.(a,b可以取任何实数值!)
解法一延长GF和CD交于HS长方形BCHG=a(a+b)S△HDF=b(a-b)/2S△FGB=b(a+b)/2S△BCD=aa/2S△DBF=S长方形BCHG-S△HDF-S△FGB-S△BCD=a
不变作OP⊥BC,作OQ⊥CD,证得△OPM≌△OQNS四边形OMCN=S△OQN+S四边形OMCQ=S△OPM+S四边形OMCQ=S正方形OPCQ=1/4S正方形ABCD=1/4*4*4=4
因为AE平行于CD,所以E到CD的距离等于A到CD的距离,即a所以三角形CDE的面积等于1/2CD乘高,即1/2a*a三角形DEG的面积等于三角形CDE+CDG+CEG的面积和三角行CDG的面积等于1