如图已知ab是圆o的直径点c,d在圆o上且bc=6cm
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:09:57
的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°
设DE=X,则CE=3X因为弦的垂直平分线经过圆心所以CD是直径所以AE=BE=AB/2=3因为AE^2=CE*DE所以3X^2=9所以X=√3所以CD=4X=4√3即圆O的半径是4√3
(1)∵AD⊥BC,∴CD=BD,∴CE=BE,∵CO=BO,∴△OCE≌△OEB,∴∠OBE=∴BE与圆O相切.(2)连接BC,AB是直径,∠ACB=90°.sin∠ABC=
连结AC,CE切圆O于点C=>∠ECB=∠A,AB为圆O的直径=>∠ACB=90=>∠A+∠B=90∠B+DCB=90=>∠A=∠DCB,∴∠ECB=∠DCB =&g
设CD与AB交于E点,O为圆心,连接CB、OC.∠OCB=∠OBC,因为OC⊥CE,所以∠ECB=90°-∠OCB又,CD⊥CE所以∠BCE=90°-∠OCB=∠ECB所以:CB平分∠ECD即证
(1)连接OC,因为角DB0=角COP,又因为角COP=2倍角CBO,所以角DBC=角CBO.可以证明三角形DBC与三角形CBA相似,可以得到DB:BC=CB:BA,=>BC^2=BD*BA(2)连接
简单的说一下:如图,∠A=∠P=∠ACO=∠PCB=x,AC=PC所以:△AOC≌△PBC,得到OC=BC所以:△COB是等边三角形因此∠OCB=60°,所以:∠A=∠P=∠PCB=30°,∠PCO=
这里同初三滴~刚考完期末1.证明:设DC与AB的交点为F连接BD,由题可知:∠BDA=∠BCA=90°∵∠BCD=∠ACD=45°∴BD=AD,∠DBA=∠DAB=45°由∠DBA=∠ACD=45°∠
∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE
话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B
1,连接AC,AD,AB,CO因为AB是直径,CO是半径,所以AO=BO=CO,故CO将角AOB平分,易得角AOC=角COB=90度,角CAO=45度,因为AC平分角DAB,所以角DAC=角CAO=4
(1)因为AB是直径,所以角ACB是90度,又因为BC=1/2AB=3(直角边是斜边的一半),所以角BAC=30度sin30度=1/2,sin角BAC的值为1/2(2)因为OE垂直AC,O为AB中点,
1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方
∵AC=CD∴∠CAB=∠CDB=30°连接OC∵OA=OC∴∠CAB=∠OCA=30°∴∠COD=60°∴∠OCD=90°C在圆O上∴DC是圆O的切线
1.弧CB=弧CD,CB=CD∠CAE=∠CAF,CF⊥AB于点F,∠CFA=90°,CE⊥AD的延长线于点E,∠CEA=90°,∠ACE=90°-∠CAE,∠ACF=90°-∠CAF∠ACE=∠AC
图是不是这样?如图做辅助线AC,因为△ABC是圆的内接三角形,所以角ACB是直角又因为∠B是ACB和DOB的公共角,所以RT△ABC∽RT△DOB所以AB/BC=BD/BO即2BO/BC=BD/BO&
在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A