如图已知ac是半径为2的圆o上的两动点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:58:23
注意到顶点横坐标为抛物线与X轴交点横坐标之和的一半,设顶点为P,与x轴交于M(m,0)、N(n,0)(a〉b).则有PM=PN,所以MN为斜边.又:MN=2,所以m=n+2在有,因为PM=PN,三角形
(1)连接OD、OE,∵⊙O切BC于E,切AC于D,∠C=90°,∴∠ADO=∠BEO=90°,∠ODC=∠C=∠OEC=90°,∵OE=OD=2,∴四边形CDOE是正方形,∴CE=CD=OD=OE=
(1)连接OD、OE,∵⊙O切BC于E,切AC于D,∠C=90°,∴∠ADO=∠BEO=90°,∠ODC=∠C=∠OEC=90°,∵OE=OD=2,∴四边形CDOE是正方形,∴CE=CD=OD=OE=
BD与圆O相切证明:连结ODOA=OD∴∠A=∠ODA∵∠CBD=∠A∴∠ODA=∠CBD∵∠CDB+∠CBD=90°∴∠CDB+∠ODA=90°∴∠ODB=90°∵OD是圆O的半径∴DB与圆O相切2
由AB=2,BC=2√3,∴AC=4,m=AO,0<m<4,(1)过O作OP⊥AB于P,当P>1时,m>2√3/3此时线段与圆没有公共点.(2)当1≤m<2√3/3时,线段AB与圆O有两个公共点.
第二题考虑一下圆,OD=OA,然后就行了,自己算吧,我也正在算第三题我不会写.~~~~(>_
过O作AC垂线,垂足为D,有OBOD时,⊙O与直线AC相交;设OB=x,则AO=5-x,∵∠B=90°,AC=13,AB=5,∴BC=12∵∠A=∠A∠B=∠ODA=90°∴△ABC∽△ADO∴AO/
过O做OE垂直AB则有三角形相似可得OE/BC=AO/ACAO=m,BC=2√3AC由勾股定理=4所以OE=2√3m/4=√3m/2没有公共点,所以√3m/2>r=1m>2√3/3O在AC上,所以OA
1:AB=2,BC=2根号3,所以角BAC是60度,AC=4,没有公共点,就是O到AB的距离大于1,所以OA>2根号3/3.应该在AC上,所以OA还要不大于4.2:圆与AB相切时,O到AB距离为1,所
设OA=R,AD=2RcosA,AB=3AD=6RcosA;AC=1.5R又AC/AB=cosAAC、AB代进去,cosA=1/2,A=60°B=30°
(1)∵A是弧BC的中点,∴AB=AC,连接OB、OA、OC,∵在△AOB和△AOC中,AB=ACOB=OAOA=OC,∴△AOB≌△AOC(SSS),∴∠CAO=∠ABO,∵AD=CE,∴AB-AD
(1)证明:连接AO,因为△ABC中,AB=AC,∠ABC=30°,所以∠ACB=∠ABC=30°,即∠BAC=120°,又因为OA=OC所以∠OAC=∠OCA=30°,因此∠OAB=90°,即OA⊥
(1)在三角形AOE中,因为OA=OE,所以角OAE=角OEA,因为BC与圆O相切,所以OE垂直于BC,则角BAE=角OEA,所以角BAE=角OAE,则AE平分角CAB(2)没图,角1在哪
(1)证明:∵∠B=90°,且OB为⊙O的半径,∴CB切⊙O于点B∵CD切⊙O于点D∴CD=CB(1分)(2)连接OD(如图1),由(1)得:BC=CD=3.在Rt△ABC中,AC=AD+CD=2+3
8/3设AD为x,则AO为根号x平方加OB,故AC:AD等于BC:OD,代入数据.
连接OD则OD垂直ADOD=OE=ROA=1+ROD^2+AD^2=OA^2得:R^2+4=(1+R)^2R=3/2圆O的直径=2R=32.AB=AE+2R=4连结OC因为OD垂直AC则DC=AC-A
(1)连接OA,OM.∵AM=BM(M是圆心)∴OM⊥AB(OM平分弦)∵OA=2,AM=AB/2=√3∴OM=1=OA/2(勾股定理)∴∠OAM=30,∠AOM=90-30=60,∠AOB=60*2
第一个问题:取AC的中点为D.∵OA=OC=2√2,∴OD⊥AC,∴OD=√(OA^2-AD^2)=√[(2√2)^2-4]=2.即:以O为圆心,与AC相切的圆的半径是2.第二个问题:∵AB=2√3<