如图已知ap cp分别
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:46:09
∠AOM=∠MOC,∠CON=∠NOB故∠AOM+∠NOB=∠MOC+∠CON=∠MON=45度故∠AOB=∠AOM+∠NOB+∠MOC+∠CON=2∠MON=90度
(1)证明:菱形ABCD中,AB=BC=CD=AD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF.在△ABE和△ADF中AB=AD,∠B=∠D,BE=DF,∴△ABE≌△ADF(SAS).
(1)AECF为平行四边形证明:∵ABCD为平行四边形∴AD∥.BC又∵E、F分别为AD、BC的中点∴AF=12ADEC=12BC∴AF∥.EC∴AECF为平行四边形.(2)∵AB⊥AC,∴△ABC是
AB//CD所以DF//EB,因为E,F为中点,DC=AB所以DF=EB,所以为平行四边形.可知ADE为等边三角形,所以DE=AE=EB=BF=FD,所以DFBE为棱形,周长为4×2=8
解题思路:(1)根据等边三角形的性质证明△ABE≌△CAD就可以得出结论;(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.解题过程:如图,已知△ABC为等边三角形,点D
:连接EF,在平行四边形ABCD中,AD=BC,AD‖BC,∵AF=BE,∴DF=EC,∴四边形ABEF和ECDF都是平行四边形,∴EG=AG,EH=HD,∴GH是ΔEAD的中位线,∴GH‖BC,GH
∵AD为△ABC的中线,AE是△ABD的中线,∴BD=CD,BE=DE,∴BE=1/2BD,BD=1/2BC;又∵AB=BD,∴BE=1/2AB,AB=1/2BC,∴BE/AB=AB/BC=1/2,∠
过点P作PM⊥AB的延长线,垂足为M,PQ⊥BC,垂足为QPN⊥AC的延长线,垂足为N∵∠MBP=∠QBP,∠PCQ=∠PCN∴PM=PQ,PQ=PN∴PM=PN∴AP平分∠BAC
∵CD为角ACB的内角平分线,所以∴∠BCD=∠ACD且∠ACD=∠ECD∴∠BCD=∠ECD∵DF‖BC∴∠EDC=∠DCB∴∠EDC=∠ECD∴ED=EC∵CF三角形ABC的外角平分线∴∠ECF=
(1)DE平行于BC,三角形ABC相似于三角形ADE由于△ADE和△BDE底分别为AD和DB,两三角形高相同,所以面积比等于两个底之比即S△ADE/S△BDE=AD/DB.设三角形BDE的面积为x.可
∵AB∥CD∴∠BEF+∠DFE=180°又∵PE平分∠BEFPF平分∠DFE∴∠PEF=1/2∠BEF∠PFE=1/2∠DFE∴∠PEF+∠PFE=1/2(∠∠BEF+∠DFE)=90°又∵三角形P
∵M、Q分别是AC,AB的中点∴MQ‖BC且MQ=1/2×BC同理可得NP‖BC且NP=1/2×BC∴MQ‖NP,MQ=NP∴MNPQ是平行四边形主要运用三角形中位线定理
⑴△ABD周长=AB+BD+AD=AB+(1/2)BC+AD△ACD周长=AC+AD+DC=AC+AD+(1/2)BC两个相减,即AB-AC=2CM⑵△ABD面积=(1/2)BD*AE△ACD面积=(
1.∠APC+∠PAB+∠PCD=360°2.∠APC=∠PAB+∠PCD3.∠PCD=∠APC+∠PAB4.∠PAB=∠APC+∠PCD
在平行四边形ABCD中,AF//CE角AFC=角CEA所以四边形AFCE是平行四边形所以AC和EF互相平分(平行四边形两条对角线互相平分)
∠C=∠DBC-∠BAC=1/2(∠DBO-∠BAO)=1/2(180°-∠OBA-∠BAO)=1/2(180°-90°)=45°所以大小不变再问:为什么是=1/2(∠DBO-∠BAO)再答:DC,A
很高兴为您解答∵四边形ABCD是平行四边形∴DE‖FB又∵DF‖BE∴四边形DFBE也是平行四边形∴DB,EF为平行四边形DFBE的对角线∴DB,EF互相平分,即EO=FO