如图已知BE,EC分别平分∠ABC,∠BCD且∠1与∠2互余,试说明AB∥CD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:02:07
∠AOM=∠MOC,∠CON=∠NOB故∠AOM+∠NOB=∠MOC+∠CON=∠MON=45度故∠AOB=∠AOM+∠NOB+∠MOC+∠CON=2∠MON=90度
∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC-BE=5
证明:∵BE∥CF,∴∠1=∠2.∵BE、CF分别平分∠ABC和∠BCD,∴∠ABC=2∠1,∠BCD=2∠2,即∠ABC=∠BCD,∴AB∥CD.
∠CAE=∠BAE∠CBD=∠CBAAC//BD那么∠CAE+∠BAE+∠CBD+∠CBA=180°那么∠BAE+∠CBA=90°那么AE⊥BE
证明:∵AB∥CD,∴∠ABD+∠BDC=180°,∵BE、DE分别平分∠ABD、∠BDC,∴∠EBD+∠EDB=90°,∴∠BED=90°,∴∠1+∠2=90°.
DF=EC啊证明:∵AB∥CD,∴∠DFA=∠FAB,∵AF、BE分别是∠DAB,∠CBA的平分线,∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DA=DF,同理得出CE=CB,∴DF=EC再问:是相
证明:∵∠A+∠ABC+∠C+∠ADC=360,∠A=∠C=90∴∠ABC+∠ADC=360-(∠A+∠C)=180∵BE平分∠ABC∴∠ABE=∠ABC/2∴∠BED=∠A+∠ABE=90+∠ABC
证明:过D作DF//BC交AB于F∵AE//BC,AD,BD分别平分∠BAE和∠ABC∴∠ADF=∠BAD,∠ABD=∠BDF∠BAD+∠ABD=∠BAE/2+∠ABC/2=90°∴△ABD为直角三角
因为AD平分∠BAC所以角BAD=角CAD在三角形AED和三角形ACD中AE=AC角BAD=角CADAD=AD所以三角形AED全等于三角形ACD(SAS)所以ED=CD所以角DEC=角DCE因为EC平
证明:延长CE交BA的延长线于点F∵∠BAC=90∴∠ABD+∠ADB=90,∠CAF=∠BAC=90∵∠CDE=∠ADB∴∠ABD+∠CDE=90∵BE⊥CE∴∠BEC=∠BEF=90∴∠ACF+∠
证明:在AB里截取AE=AK∵AD平分∠EAB∴∠EAD=∠BAD∵AD=AD∠EAD=∠BADEA=KA∴△EAD全等于△KAD(SAS)∴∠DKA=∠E同理可证∠C=∠DKB∵∠DKA+∠DKB=
【纠正DF=½AC】证明:∵AD=BD,DF//AC∴DF是⊿ABC的中位线∴DF=½AC取AE中点G,连接DG∵AG=EG,AD=DB∴DG是⊿ABE的中位线∴DG//BE∵CE
证明:延长AD交BC的延长线于F∵AD平分∠EAB∴∠EAD=∠BAD∵AE⊥EC,BC⊥EC∴AE∥BC∴∠F=∠EAD,∠FCD=∠AED∴∠BAD=∠F∴AB=BF∵BD平分∠ABC∴∠ABD=
OE垂直平分CD,理由是:因为E为∠AOB的平分线,所以∠AOE=∠EOB因为EC⊥OA,ED⊥OB,所以∠ECO=∠EDO=90°,DE=CE(角平分线上的点到角两边的距离相等)所以OD=OC,所以
(1)延长AE,交BC于点M,延长AD,交BC于点N∵CD是∠ABN的平分线,BD⊥AN易证:△BAN是等腰三角形∴AE=EM同理:AD=DN∴DE是△AMN的中位线∴DE‖MN,即DE‖BC(2)由
在四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠ADC=180°,∠DFC+∠FDC=90°,∵BE平分∠ABC,DF平分∠ADC,∴∠EBC=1/2∠ABC,∠FDC=1/2∠ADC
∵AE平分∠BAD∴∠BAE=∠DAE∵▱ABCD∴AD∥BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD-BE=2故选B.
∵AC∥BD,∴∠CAB+∠DBA=180°,∵AE、BE分别平分∠CAB、∠DBA,∴∠2=1/2∠CAB,∠4=1/2∠DBA,∴∠2+∠4=1/2(∠CAB+∠DBA)=90°,过E作EF∥AC