如图已知dae在一条直线上△ABC全等于△AFB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:00:13
如图已知dae在一条直线上△ABC全等于△AFB
已知,如图,A,B,C,D四点在一条直线上,AC=BD,AE//DF,∠ABE=∠DCF,求证△ABE全等△DCF

证明:∵AC=BD∴AC-BC=BD-BC∴AB=DC∵AE//FD∴∠FDC=∠BAE(两直线平行,内错角相等)∵∠ABE=∠FCD∴△ABE≌△DCF(边角边SAS)

已知,如图1所示,三角形ABC与三角形ADE.AB等于AC,AD等于AE,角BAC等于角DAE,且点BAD在一条直线上,

①∵AB=AC,AD=AE,∠BAC=∠EAD∠BAE=∠BAC+∠CAE∠CAD=∠CAE+∠EAD∴∠BAE=∠CAD∴△BAE≌△CAD∴BE=CD②由①知∠ABE=∠ACDBM=CN(M、N是

三角形ABC是等边三角形,D,B,C,E在一条直线上,角DAE=120度,已知BD=1,CE=3.求等边三角形的边长

角CAE+角E=60度角D+角E=180度-120度=60度=>角CAE=角D而对于等边三角形有角ABD=角ECA于是三角形ABD相似于ECA=>AB/EC=BD/CA=>BD*EC=3=边长^2=>

已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α,且点B,A,D在一条直线上,连

(1)证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD(SAS),∴BE=CD.②∵△ABE≌△ACD,∴∠ABE=∠ACD,BE=CD,∵M、N分别

如图,已知点A、D、B、F在一条直线上,△ABC≌△FDE.

因为两个三角形全等,所以角A等于角B,所以AC平行EF;又因为AB等于DF,即AD+BD等于FB+BD,所以AD等于BF

已知在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B、A、D在一条直线上,连接BE、CD;M,

证明:由AE=AD,AB=AC,∠BAE=∠CDA得△BAE∽△CDA,M,N分别为BE、CD的中点△MAE∽△NAD△MAB∽△NACAM,AN是△BAE,△CDA对应的中线AM/AN=ABE与AC

三角形ABC是等边三角形 D,B,C,E在一条直线上,角DAE=120度 已知BD=1 CE=3求等边三角形的边长

先证明三角形DBA相似三角形ACE设其边长为x易得1/x=x/3得x=根号3

如图,已知△ABC是等边三角形,点D,B,C,E在同一条直线上,且∠DAE=120°,已知BD=1.CE=3,求等边三角

边长是根号3角DAB+角CAE=60度,角DAB+角D=60度,所以角D=角角CAE,又因为角DBA=角ACE=120度所以,三角形DBA与三角形ACE相似AB/CE=DB/AC=边长/3=1/边长,

如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,点B,C,E在一条直线上,并且AC=AB,AD=AE.

(1)◆正确结论是:CD=BE.证明:∵∠EAD=∠BAC=90°(已知).∴∠CAD=∠BAE(等式的性质).又AE=AD;AB=AC.(已知)∴⊿CAD≌⊿BAE(SAS),CD=BE.(2)◆正

已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接B

(1)证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,C

已知在下图中,将一副三角形(RT△ABC和△DEF)如图①摆放点E,A,D,B在一条直线上且D

∵∠A=∠ADM=30°,∴MA=MD.又MG⊥AD于点G,中的结论成立.如图9,在Rt△AMG中,∠A=30三角形DGM和NHD相似所以DH=(根号3)MGAG=(

已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接B

分析:(1)∵∠BAC=∠DAE,∴∠BAE=∠CAD,又∵AB=AC,AD=AE,∴△BAE≌△CAD(SAS)∴BE=CD(全等三角形对应边相等)根据全等三角形对应边上的中线相等,可证△AMN是等

如图,△ABC是等边三角形,∠DAE=120°,点D,E在直线BC上,则AD乘以AE=

∠DAB=60°-∠CAE=∠BCA-∠CAE=∠CEA(∠BCA=∠CAE+∠CEA)∠D公用则△DAB和△DEA相似则AD/DE=AB/AE所以AD*AE=AB*DE所以答案选D

如图,在△ABC和△ADE中,已知角BAC=角DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连

∵AB=AC,∠BAD=∠CAE,AD=AE∴△BAD≌△CAE∴BD=CE再问:谢谢了。。居然这么简单

已知:如图所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE

证明过程如下:1、在ΔCAD和ΔBAE中∵∠CAD=∠CAE+∠DAE=∠BAC+∠CAE=∠BAE∵AC=AB,AD=AE∴ΔBAE≌ΔCAD∴CD=BE,∠ACD=∠ABE2、M、N分别为BE、C

如图,△ABC是腰长为1的等腰直角三角形,A是直角顶点,且D、B、C、E在同一条直线上,∠DAE=135°

∠E=∠ACB-∠CAE=45°-∠CAE∠D=180°-∠E-∠DAE=180°-(45°-∠CAE)-135°=∠CAE同理,∠E=∠BAD所以△ADB∽△EAC所以DB/AC=AB/CEDB×C

已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连

(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE