如图已知efgh分别为平行四边形abcdad,bc的中点,求证be=df

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:10:46
如图已知efgh分别为平行四边形abcdad,bc的中点,求证be=df
已知如图:E、F、G、H分别是AB、BC、CD、CA的中点,求证:四边形EFGH是平行四边形.

额,赶不上节奏啊再问:楼上的看不懂,团长你能复述一遍吗?再答:GH是三角形DAC的中位线,所以GH=AC/2同理,EF是三角形BAC的中位线,所以EF=AC/2因此GH=EFEH是三角形ABD的中位线

如图.已知四边形ABCD中,EF,GH分别为AB,BC,CD,DA的中点.求证:EFGH为平行四边形.

在△ABC中,因为E.F分别是AB、BC的中点,即EF是△ABC的中位线,所以EF//AC,EF=1/2AC,同理,HG//AC,HG=1/2AC所以EF//HG,EF=HGEFGH为平行四边形

平行四边形ABCD的四个顶点,分别向两条对角线引垂线,垂足分别为点E、H、G、F.求证:四边形EFGH是平行四边

∵ABCD是平行四边形,∴OA=OC,∵AE⊥OD,CG⊥OB,∴∠AEO=∠CGO=90°又∠AOE=∠COG,∴△AOE和△COG全等,∴OE=OG,同理可证明△DOF和△BOH全等,得OF=OH

如图,EFGH分别为正方形ABCD的边AB,BC、cd、da上的点,

设边长=1,AE=BF=CG=DH=1/3ED=√10/3小正方形边长=√10/3-1/√10-1/3√10=√10/5小正方形面积=10/25=2/5阴影部分的面积与正方形ABCD的面积之比为=2/

已知:如图,E,F,G,H分别是AB,BC,CD,DA的中点,求证:四边形EFGH是平行四边形

连接AC、BDH、G分别是AD、CD的中点,HG||ACE、F分别是AB、BC的中点,EF||AC故HG||EF同理,GF||BD,HE||BDGF||HE所以四边形EFGH是平行四边形.

已知如图平行四边形ABCD各∠的角平分线相较于点EFGH 求证四边形EFGH为矩形

证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°,∵AH,BH分别平分∠DAB与∠ABC,∴∠HAB=1/2∠DAB,∠HBA=1/2∠ABC,∴∠HAB+∠HBA=9

如图,已知EFGH分别是正方形各自所在边的的三等分点,如果正方形的面积是1平方厘米,那么四边形EFGH的面积是

很高兴为您解答,答案是九分之五这题不用想的很麻烦,因为都是三等分点,所以ae=三分之一af=三分之二利用割补法,总面积剪空白,即可求出答案.1-4x九分之一=九分之五

已知如图,平行四边形ABCD的四个内角的平分线分别相交于E,F,G,H.求证:四边形EFGH为矩形

1、易知,这4条平分线为2组平行线,所以EFGH为平行四边形;2、∠A+∠D=180度;所以0.5*∠A+0.5*∠D=90度所以EFGH的一个内角=90度综上所述:EFGH为矩形

如图,已知e、f、g,h分别是ab、bd,cd,ca,的中点,求证:四边形efgh是平行四边形

连接AD,在三角形ABD中,EF是中线所以EF平行AD且EF=AD/2同理在三角形ACD中,HG是中线HG平行AD且HG=AD/2所以EF平行HG且EF=HG所以EFGH是平行四边形

如图,已知E、F、G、H分别为四边形ABCD各边中点,连EF、FG、GH、HE得到四边形EFGH称为中点四边形.

(1)连ABCD的任一条对角线,如BD,由中位线可得EFGH一组对边平行且相等,所以EFGH为平行四边形(2)由第一问可知,EFGH为平行四边形,所以当AC、BD相等时,EFGH为菱形当AC、BD互相

如图,在矩形ABCD中,AB=6,BC=8,点E,F,G,H分别在边AB,BC,CD,DA上,若四边形EFGH为平行四边

EF/AC=EB/AB,EH/BD=AE/AB,AC=BD=10,EF+EH=10*(AE+EB)AB=10,所以周长=2(EF+EH)=20再问:有点不太懂EF+EH=10*(AE+EB)AB=10

已知:如图,矩形ABCD的外角平分线分别交于点EFGH.求证:四边形EFGH是正方形

证明:∵矩形的ABCD的外角都是直角,HE,EF都是外角平分线,∴∠BAE=∠ABE=45°.∴∠E=90°.同理,∠F=∠G=90°.∴四边形EFGH为矩形.∵AD=BC,∠HAD=∠HDA=∠FB

有这样一道数学题:已知正方行ABCD,内接平行四边行EFGH,平行四边行的面积为5,EG=3,FH=4,求正方行的面积?

过E,F,G,H分别做各边垂线,4条垂线分别相交M,N,P,Q,假设MN=b,MP=c,AB=a1)则:2S◇EFGH=S□ABCD+S矩形MNPQ2*5=a^2-bc...1)2)b^2=EG^2-

已知,如图E.F.G.H分别是AB,BC,CD,DA的中点求证四边形EFGH是平行四边形

连接AC.因为E.F.G.H分别是AB,BC,CD,DA的中点所以根据中位线定理得:GH//AC,GH=1/2AC;EF//AC,EF=1/2AC即:EF//GH;且EF=GH所以四边形EFGH是平行

已知:如图,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形

证明:连接BDEH是△ABD的中位线∴EH‖BD,EH=1/2BD同样FG是△BCD的中位线∴FG‖BD,FG=1/2BD所以:EH‖FG,EH=FG根据一组对边平行且相等的四边形是平行四边形得到:四

已知,如图,从菱形abcd的对角线的交点o分别向各边引垂线,垂线分别是e,f,g,h,求证:四边形efgh为矩形

这个本来就是定理.证明:依题意得Rt△AOB≌Rt△AOD≌Rt△COD≌Rt△COB根据勾股定理可得EO=FO=GO=HO∴EG=FH又根据中点四边形定理,四边形EFGH是平行四边形∵EG=FH(对

如图已知四边形ABCD,对角线AC垂直BD于O,E、F、G、H分别为边AB、BC、CD、AD的中点.求证:四边形EFGH

提示:各中线即为这个四边形的边,平行于相应的“对角线”,则这个四边形EFGH为平行四边形,“对角线”互相垂直,则这个四边形的邻垂直,所以这个四边形是矩形.

已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边

(1)四边形EFGH的形状是平行四边形.理由如下:如图,连结BD.∵E、H分别是AB、AD中点,∴EH∥BD,EH=12BD,同理FG∥BD,FG=12BD,∴EH∥FG,EH=FG,∴四边形EFGH

已知,如图在平行四边形ABCD中,E,F,G,H分别为各边的中点,求证EFGH为平行四边形

E,F,G,H分别为,AB,BC,CD,DA,的中点,链接平行四边形的对角线,根据同位线定理可得:EF和HG平行且等于AC的二分之一,在四边形中两边平形且相对则为平行四边形.