如图已知l1平行l2,点a,b在直线l1上,点cd在直线l2上,则三角形acd
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:12:35
(2)不变无论P在AB间哪一点,都可以通过P作平行于l1和l2的直线来证明∠1+∠2=∠3(PS:本来第(1)问中的P就是AB间任取的一点)(3)当P在BA的延长线上时∠1+∠3=∠2当P在AB的延长
(1)∠1+∠2=∠3;理由:过点P作l1的平行线,∵l1∥l2,∴l1∥l2∥PQ,∴∠1=∠4,∠2=∠5,∵∠4+∠5=∠3,∴∠1+∠2=∠3;(2)同理:∠1+∠2=∠3;(3)同理:∠1-
答案:∠2=∠1+∠3证明:从P点作L1、L2的平行线L3,交CD于点O则:∠2=∠CPO+∠DPO∵L1∥L2∥L3∴∠1=∠CPO,∠3=∠DPO∴∠2=∠1+∠3(2)如果点P在A,B两点之间运
(1)l1,l2平行,所以角ACD+角CDB=180又根据三角形两角之和等于第三角补角α+β+180-γ=180γ=α+β(2)β=α+γ希望对你有帮助
/>⑶E、F点坐标分别为E﹙k/2,2﹚、F﹙1,k﹚,∴PE=|1-k/2|,PF=|2-k|,∠EPF=90°,设M点坐标为M﹙0,m﹚,则△MEF一定是直角△时,才能全等;下面分三种情况讨论:一
(1)∠1+∠2=∠3由P点做l5//l1,因为l1//l2,由平行线的传递性可以知道,如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以l2//l5设l5把∠3分成∠4和∠5(∠4在l5
(1)作PE平行l1,l2所以∠1=∠CPE,∠2=∠EPD因为∠3=∠CPE+∠EPD所以∠3=∠1+∠2(2)不发生变化(3)①当P点在A的上方时,作PF平行l1,l2所以∠1=∠FPC,∠FPD
平行线等分线段成比例,AB/BC=DE/EF推出结论
1,设PCD=∠1,∠PDC=∠2;那么∠ACP+∠1+∠2+∠PDB=180°.又因为∠1+∠2+∠CPD=180°,得∠ACP+∠PDB=∠CPD.2,P在AB两点之间运动,关系不会发生变化.3,
1直线斜率K2=-2,K1=m-2/3-mk1=k2m=4
证明:连接AF,交L2于G点,连接BG、GE,可知BG//CF,GE//AD在∆ACF中,BG//CF即AB/BC=AG/GF在∆ADF中,GE//AD即DE/EF=AG/GF
(1)如图,过点P做AC的平行线PO,∵AC∥PO,∴∠β=∠CPO,又∵AC∥BD,∴PO∥BD,∴∠α=∠DPO,∴∠α+∠β=∠γ.(2)①P在A点左边时,∠α-∠β=∠γ;②P在B点右边时,∠
AB/CD=2/3,∴DE/EF=2/3,EF/DE=3/2(EF+DE)/DE=(3+2)/2即DF/DE=5/2
证明:∵l1∥l2,∴点E,F到l2之间的距离都相等,设为h.∴S△EGH=1/2GH•h,S△FGH=1/2GH•h,∴S△EGH=S△FGH,∴S△EGH-S△GOH=S△
(1)∠1+∠2=∠3.∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠1+∠2=∠3.(2)①过A点作AF∥BD,则AF∥BD∥CE,
(1)∠2=∠1+∠3.证明:如图1,过点P作PE∥l1,∵l1∥l2,∴PE∥l2,∴∠1=∠APE,∠3=∠BPE.又∵∠2=∠APE+∠BPE,∴∠2=∠1+∠3;(2)①如图2所示,当点P在线
延长DP交l1于点E∠α+∠β=∠γ因为l1∥l2所以∠1=∠β因为∠CPD是△PCE的外角所以∠CPD=∠1+∠β所以:∠α+∠β=∠γ
(1)由题意得,令直线l1、直线l2中的y为0得:x1=-32,x2=5,由函数图象可知,点B的坐标为(-32,0),点C的坐标为(5,0),∵l1、l2相交于点A,∴解y=2x+3及y=-x+5得:
图④:∠1+∠2+∠3=360°,图⑤:∠1=∠2+∠3,图⑥:∠2=∠1+∠3.