如图已知三角形abc相似于三角形a1b1c1,相似比K(K>1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:13:35
如图已知三角形abc相似于三角形a1b1c1,相似比K(K>1)
已知 三角形ABC相似于三角形A1B1C1,三角形A1B1C1全等于三角形A2B2C2.求证 三角形ABC相似于A2B2

这道题是这样的.因为三角形A1B1C1和三角形A2B2C2全等.全等三角形满足:角:A1=A2,B1=B2,C1=C2.边:A1C1=A2C2,A1B1=A2B2,B1C1=B2C2.我们只用关于角的

已知如图BE,CF是三角形ABC的两高,求证三角形AEF相似三角形ABC

因为角ABE+角A=90度角ACF+角A=90度所以角ABE=角ACF角A=角A所以三角形ABE相似于三角形ACF所以AB比AC=AE比AF角A公用所以三角形AEF相似于ABC

已知:如图,三角形ABC中,AD=DB,角1=角2,求证:三角形ABC相似三角形EAD

证明:因为AD=BD∴∠B=∠1∵∠ADC=∠B+∠1∴∠ADC=2∠1∵∠1=∠2∴∠BAC=2∠1=∠ADC∵∠C=∠C∴△ACD∽△BCAE还是不清楚

如图,已知三角形ABC相似于三角形ADE,连接BD,CE.1.是说明三角形ABD相似于三角形

证明:(1)∵△ABC∽△ADE∴AB/AC=AD/AE,∠BAC=∠DAE∴∠BAC-∠DAC=∠DAE-∠DAC即:∠BAD=∠CAE∴△ABD∽△ACE(两组对应边的比相等,且相应的夹角相等)(

如图,已知BD,CE是三角形ABC的两条高.BD,CE相交于O,求证三角形ADE相似于三角形ABC

证:∵BD⊥ACCE⊥AB∴∠ADB=∠AEC=90°∵∠BAD=∠CAE∴△ACE∽△ABD∵AD:AB=AE:AC∵∠BAE=∠DAE∴△ADE∽△ABC

已知,如图,be、cf分别是三角形abc的边ac、ab上的高,be于cf相交于点d,求证三角形abc相似于三角形aef

(1)∵∠A=∠A,∠AFC=∠AEB=90°∴△AFC∽△AEF∴AF比AE=AB比AC∴AF比AB=AE比AC∴三角形abc相似于三角形aef(2)∵∠AEB=90°,∠A=60°∴AE比AB=1

已知:如图,bd、ce是三角形abc的两条高,求证:三角行ade相似三角形abc

三角形面积相等,所以AB*CE*1/2=AC*BD*1/2,AB*CE=AC*BD,AB/AC=BD/CE,角A=角A,三角形ABD相似于三角形ACE,所以AD/AE=AB/AC,角A=角A,所以三角

如图,CD,BE是三角形ABC的两条高,求证三角形AED相似于三角形ABC

证明:∵∠CDA=∠BEA=90°∵∠CAD=∠BAE∴△ABE∽△ACD∴AE:AD=AB:AC∴AE:AB=AD:AC又∵∠EAD=∠BAC∴△ADE∽△ACB

如图,已知BD/BE=AD/ED=AB/BC,求证:三角形ABC相似于三角形DBE

因为BD/BE=AD/EC=AB/BC所以三角形ABD与CBE相似所以∠ABD=∠CBE所以∠ABC=∠DBE又因为,BD/BE=AB/BC所以三角形ABC相似于三角形DBE

如图,已知三角形ABC中CE垂直于AB于E,BF垂直于F,(1)求证三角形AFE相似于三角形ABC,

证明:(1)∵BF⊥AC,CE⊥AB∴∠AEC=∠AFB=90°∵∠A=∠A∴△ABF∽△ACE∴AF/AE=AB/AC∴AF/AB=AE/AC∵∠A=∠A∴△AEF∽△ACB(2)∵∠A=60°∴A

如图,已知三角形abc是面积为根号三的等边三角形,三角形abc相似于三角形ade,ad等于2ad,角bad等于45度,a

这是2011•苏州中考题:原题表述:(2011•苏州)如图,已知△ABC是面积为根号3的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则

如图,三角形ABC中,AD=DB,角DAC=角EBD.求证三角形ABC相似于三角形EDA

∵∠B=∠B角DAC=角EBDDE:AC=BE:AB∴全等PS:大哥俺也不会耶...看在俺辛辛苦苦给你想的份上给俺份!楼上的还不如我呢谁说没图不能做.

如图,已知在圆内接三角形ABC中,AB=AC,弦AD交BC于点E.求证三角形ABE相似于三角形ADB

证明:∵AB=AC∴弧AB=弧AC∴∠D=∠ABE∵∠BAE=∠DAB∴△ABE∽△ADB

如图,已知三角形ABD相似三角形ACE,求证三角形ABC相似三角形ADE

没图片吗,天马行空很难啊.再问:撒比,不会打拉到。你滚吧!再答:∵ABC相似于三角形ADE∴AD:AC=AB:AE∵∠DAB=∠CAE∴三角形ABD相似于三角形ACE

如图,已知三角形ABC,用尺规作一个三角形,使作出的三角形与三角形ABC相似并且相似,

已知ΔABC,求作:ΔADE,使ΔADE∽ΔABC,且AD:AB=2:1. 作法:1、延长AB,在射线AB上截取BD=AB,2、延长AC,在射线AC上截取CE=AC,3、连接DE,则ΔADE

如图,在三角形ABC中,已知BD,CE分别是边AC,AB上的高,求证:三角形ADE相似于三角形ACB

∵BD,CE分别是边AC,AB上的高,∴∠ADB=∠AEC=90º,又∠A=∠A,∴⊿ADB∽⊿AEC,∴AD/AE=AB/AC,在ADE和⊿ABC中AD/AE=AB/AC,∠A=∠A,∴A