如图已知正三棱锥S-ABC的侧面积是底面积的2倍

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:59:37
如图已知正三棱锥S-ABC的侧面积是底面积的2倍
已知正三棱锥S-ABC,一个正三棱柱的一个底面的三个顶点在棱锥的三条侧棱上,另一底面在正三棱锥的底面上,若正三棱锥的高为

(1)设内接正三棱柱的高为x,底面的边长为a,由直角三角形相似得15−x15=23×32a23×32×12,∴a=60−4x5,内接正三棱柱的侧面积为:120=3a•x=360−4x5 x,

已知正三棱锥P-ABC的高PO为h,点D为侧棱PC的中点,PO与BD所成角的余弦值为23,则正三棱锥P-ABC的体积为(

设底面边长为a,连接CO交AB于F,过点D作DE∥PO交CF于E,连接BE,则∠BDE即PO与BD所成角,∴cos∠BDE=23,∵PO⊥面ABC,∴DE⊥面ABC,∴△BDE是直角三角形,∵点D为侧

正三菱锥S-ABC侧棱为l,底面边长为a,写出求此三棱锥体积的算法

底面对角线的一半可以求出来知道侧棱然后可以求出高然后底面积也可求结果就出来了你说要算法看错题目3棱锥啊那直接求底面外接圆半径还是可以求然后和前面一样不懂在线问我吧

正三棱锥S-ABC的侧棱为a,底面边长为b,写出此三棱锥体积的一个算法 紧急啊、跪谢

第一步:三棱锥底面面积为四分之根号三(b平方)(注:用的是三角形面积公式,可以直接求)第二步:三棱锥的高为根号(a平方-三分之根号三b)(注:这个也是可以直接求的)第三步:正三棱锥的体积V=三分之一的

如下图所示,已知正三棱锥S—ABC的高SO=h,斜高SM=l,求经过SO的中点平行于底面的截面△A′B′C′的面积.

S△ABC=(√3/4)AB^2利用正弦定理的面积公式就可以求得.S△ABC=1/2*AB*AB*sin60°CM一定过0.因为是正三棱锥再问:哦哦~正弦定理~谢谢哈,但是cm经过o点的话,那S△AB

已知正三棱锥S-ABC的三个侧面均为等腰直角三角形,且底面边长为根号2.

正确答案:A底面面积:S△=(√3)*a^2/4=(√3)/2三棱锥S-ABC的三个侧面均为等腰直角三角形,由勾股定理可得:棱长=1底面等边三角形的高为:[(√3)/2]*(√2)=(√6)/2根据等

如图,在正三棱锥S-ABC中,M、N分别为棱SC、BC的中点,并且MN⊥AM,若侧棱长SA=,则正三棱锥S-ABC的外接

连接AN,MN//SB(M.N分别是SC.BC的中点)SB⊥SB得SC⊥MNAN是三角形ABC的高AN⊥SC由上所得SC⊥面AMNAS⊥CS(话说SA=?你到是打出来啊!给一半题目让人怎么做?)

高中立体几何已知正三棱锥S-ABC内接于半径为6的球,过侧棱SA及球心O的平面截三棱锥及球面所得的截面如下图,则三棱锥的

因为此图为SOA平面截球和三棱锥得到的,所以可以确定点O就在平面ABC上.SA为正三棱锥的侧棱,长度为6√2由于O在△ABC上,由S-ABC为正三棱柱,可以确定O即为等边△ABC的中心,由此可以计算得

数学概率的计算已知正三棱锥S-ABC的底面边长为a,高为h,在正三棱锥内取点M,试求点M到底面距离小于h|2的概率答案是

取一平面平行于底面ABC,该平面到底面的距离为h/2.在这个平面一下的部分均满足M的要求.所以只需求出这部分的体积.该平面上半部分的体积为总体积的1/8(因为高是h/2)所以概率为1-1/8=7/8

如图,已知一个正三棱锥P-ABC的底面棱长AB=3,高PO=6

连接AO,在等边三角形ABC中,由AB=3,可得AO=2332−(32)2=3,在Rt△AOP中,AP=3+6=3,∴正三棱锥P-ABC的四个面是全等的等边三角形,∴S表面积=4×34×32=93.

如图,已知正三棱锥P-ABC的底面边长为6,高为3,求正三棱锥的侧棱长和斜高

已知正三棱锥v-ABC底面边长为6,则底面外接圆半径=2√3侧棱,高,底面外接圆半径构成直角三角形所以侧棱=根号【高^2+底面外接圆半径^2】=根号21斜高,侧棱,底边一半构成直角三角形侧棱=根号【斜

11.已知正三棱锥V-ABC的正视图、俯视图如图14所示,其中VA=4,AC= .1.已知

11.已知正三棱锥V-ABC的正视图、俯视图如图14所示,其中VA=4,A...当然你绝不可能相信hi.baidu.com/tofeng.com/sajvfk却让我们逐渐退缩

已知正三棱锥S-ABC的侧棱长与底面边长相等,E、F分别为SC、AB的中点,求异面直线EF与SA所成角

因为已经证明了ED‖SA和DF‖BC,而在正四面体S-ABC中SA⊥BC,所以ED⊥DF.

已知正三棱锥S-ABC的侧棱长为√3,E,F分别是SC,BC的中点,且EF⊥AE,则该正三棱锥外接球的表面积为

先证明正四棱锥,再算半径,半径为3√2/4,注意找中心点,最后利用球的表面积公式,得到9∏/2

一道立体几何题已知正三棱锥S-ABC内接于半径为6的球,过侧棱SA及球O的平面截三棱锥及球面所得截面如图所示,则此三棱锥

这个.这张图不是正视图,侧楞SA现在是斜对着你的.由于给出的条件是正三棱锥,所以在每一个顶点到别的顶点的距离都相等;由图知一条侧楞过圆心,所以正三棱锥有一顶点在圆心,这样就好求了.半径为6就是说棱长为

已知正三棱锥S-ABC的底面边长为4,高为3,在正三棱锥内任取一点P,

对的,答案就是7/8.解释:这是一条考察几何概率的题目,V(三棱锥)=S(底面积)*h(高);由原题可知:V(S-ABC)=S(ABC)*H;然而“在正三棱锥内任取一点P,使得V(P-ABC)

如图,已知三棱锥S-ABC中,角ASB=角BSC=角CSA=90度,求证三角

依题意可得AB^2=SA^2+SB^2,AC^2=SA^2+SC^2,BC^2=SB^2+SC^2,2AB*BC*cos∠ABC=AB^2+BC^2-AC^2=2SB^2>0,所以cos∠ABC>0,