如图已知正方形ABCD中,对角线BD=2根号2,求正ABCD的周长

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:14:03
如图已知正方形ABCD中,对角线BD=2根号2,求正ABCD的周长
如图已知,正方形ABCD中,AE=BF,判断四边形ADHG的形状并证明

解∵在正方形ABCD中∠ABE=∠BCF=90°AB=BC,又∵AE=BF∴AE^2-AB^2=BF^2-BC^2,∴BE^2=CF^2∴BE=CF∴△ABE≌△BCF(SSS)∴∠BAG=∠CBH∵

如图,在正方形ABCD中,对角线

证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE

如图,已知正方形ABCD中,角EAF=45°,求证:EF=BE+DF.

证明:在CB的延长线上取点G,使BG=DF,连接AG∵正方形ABCD∴AB=AD,∠D=∠ABG=∠BAD=90∴∠BAE+∠DAF=∠BAD-∠EAF∵∠EAF=45∴∠BAE+∠DAF=45∵BG

如图,已知正方形ABCD中,若AN垂直于BM,请说明AN=BM

文字简单说明一下吧角A为直角假设AN、BM焦点为O则角AOM为直角因此角MAO=角ABM另外由于是正方形,因此AB=AD而AN=AD/COS(角MAO)BM=AB/COS(角ABM)因此能得出AN=B

已知,如图,正方形abcd中,E为BC上一点,AF平分

是AE=BE+DF吧!再问:是,我打错了。求解!再答: 延长EB至G点,使BG=DF,链接AG已知,∠DAF=∠FAE,边AD=AB∴ΔADF≌ΔABG(SAS)∴∠BAG=∠DAF∵∠DA

已知,如图,正方形ABCD的对角线AC与BD

证明:∵ABCD正方形,∴∠DOF=∠COE=90°,OD=OC,∴∠OCE+∠OEC=90°,∵DG⊥CE,∴∠ODF+∠OEC=90°,∴∠OCE=∠ODF,∴ΔOCE≌ΔODF,∴OE=OF.

已知:如图,在正方形ABCD中,对角线AC,BD相交于点O

因为AC,BD为正方形ABCD的对角线则AC⊥BDAO=CO角BAC=45º因为EG⊥AC三角形AEG为等腰直角三角形AG=EG因为EF⊥BD所以EFOG为矩形EF=OG因此EG+EF=OG

如图,已知正方形ABCD和线段a.请你在正方形ABCD中画出裁剪线并将它拼接成两个小正方形

如图,首先熟悉勾股定理的几何证明.再延其思路找出图形裁剪线.

已知如图,O是正方形ABCD对角线上一点,以点O为圆心,OA长为半径的圆O与BC相切与点M,与

∵BC、CD是切线,∴∠ONC=∠ONC=90°,∵ABCD是正方形,∴∠BCD=90°,∴四边形OMCN是矩形,又OM=ON,∴矩形OMCN是正方形,设圆半径为R,OA=OM=CM=R,∴OC=√2

已知:如图,正方形ABCD的边长为8cm,M在CD上,且DM=2cm,N是对角线上的一动点,则DN+MN的最小值为()c

10cm你把D沿AC对称到B,DN+MN的最小值就是BM 那图好像不能显示,你点一下就能看了

1、如图,将边长为2cm的正方形ABCD沿其对角

1.阴影部分为平行四边形,高为a'd,底为aa'=x,x(2-x)=1,x=1再问:那第二题呢?再答:没说是什么类型方程吗再问:方程是x^2-2bx+a-4b=0再答:2.根的判别式化简后b^2+4b

已知:如图,正方形ABCD中,E为BC上一点,AF平分

(没时间画图,请谅解.)延长CD在CD延长线上截取DG=BE在△ABE与△ADG中AB=AD∠B=∠ADB=90°BE=DG∴△ABE≌△ADG(SAS)∴AE=AD,∠BAE=∠DAG∴∠EAG=9

如图,已知点O是正方形ABCD的重心

这题只要证明N为AB中点,就可得出那2个结论可以先设MC=a,DC=2a,MD=根号5a我用:√5a来表示令NC与MD交点为P,则CP=2√5a/55分之2倍根号5可求出MP=√5a/5然后ΔMPC相

已知如图,正方形ABCD中,AP=AB+CP,AF是

作FE垂直AP于E,连接PF.因为角BAF=角PAF,角B=角AEF=90度,AF=AF,所以,三角形ABF全等三角形AEF,所以,AB=AE,BF=EF.因为AP=AB+CP,所以,EP=CP;又P

已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,

OA=OD=AD/sqrt(2),D(0,2sqrt(2))如图,PED-PFA全等,PEOF为正方形,PO平分DOF当A接近O时,PE接近1/2AB,当A接近F时,PE接近PD,所有范围是1/2AD

已知,如图O是正方形ABCD的中心,

(3)作EH垂直BD于点H,因为BE是角DBC的平分线,角BCD=90,所以,EH=CE,BH=BC.由(1)、(2)可知,BE=DF=2DG=2根号2.设AB=X,CE=Y,则DH=BD-BH=X(

如图,已知正方形ABCD中,若EF垂直于GH,请说明EF=GH

过点G向AD做垂线,交AD于M;过点E向DC做垂线,交DC于N:EF垂直于GH,AD垂直于DC,则角AHG=角DFE;角GMH=角ENF=90°,角MGH=角NEFEN=GM;三角形MHG全等于三角形

如图,在正方形ABCD中.

(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG

已知:如图,正方形ABCD中,CE=CF,求证:BH垂直于DE

证明:∵四边形ABCD是正方形∴BC=CD,∠BCF=∠DCE=90°∵CE=CF∴△BCF≌△DCE∴∠CBF=∠CDE∵∠CDE+∠E=90°∴∠CBF+∠E=90°∴∠BHE=90°∴BH⊥DE