如图已知点p是椭圆y2 5 x2 4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:11:38
连接点P和椭圆的右焦点(不妨记为F2)由向量OQ=1/2(OP向量+OF向量)可知Q为PF的中点.又点O为FF2的中点,所以OQ为三角形FPF2的中位线所以PF2=2OQ=8,所以PF=2a-PF2=
由题,△BPA为等腰直角三角形∴AB=BP=1+b,AP=√2AB向量AB*向量AP=|AB|*|AP|*cos45'=(1+b)^2=9∴b=2,P(3,1)将P点坐标代入椭圆方程解得a=2√3即x
对第一题要理解电势和电势能的区别,电势与只与源电荷有关系,与自身电荷正负没有关系,所以从M到P电势升高,电势能减小.第二题中,一般设无穷远处电势为0,那问题就解决了.
(1)∵椭圆y24+x23=1的下焦点F(0,-1),点P在椭圆上,且点P位于y轴右侧,∴PF∥l时,P点坐标为P(x,-1),(x>0),把P(x,-1)(x>0)代入椭圆y24+x23=1,得14
依题意|PF1|:|PF2|=2设|PF1|=m,|PF2|=n所以m+n=2a,m=2n,m²+n²=4c²=36所以a²=81/5,b²=a
a=5,b=4按定义,|PF1|+|PF2|=2a=10
点H(-a²/c,0)点B(0,b)F(c,0)设点P(c,y)代入椭圆方程c²/a²+y²/b²=1(1)因为HB//OP所以(b-0)/(0+a&
解决方法一:(Ⅰ)∵点P在椭圆上?∴2A=|PF1|+|PF2|=6,A=3.在RT△PF1F2|频率F1F2|=√(|PF2|^2-|的PF1|^2)=√5∴椭圆的半焦距C=√5,B2=A2-C2=
由题意可得,椭圆与双曲线的焦点相同且F1F2=2由椭圆的定义可知,PF1+PF2=21+a2,由双曲线的定义可知,|PF1−PF2|=21−a2上式两边同时平方相加可得2(PF12+PF22)=8即P
答案为:1这一题只要你学了焦半径就很简单.首先e=椭圆上一点倒左(右)焦点的距离/这一点到左(右)准线的距离(这就是焦半径的公式).所以你设P(x,y)所以:绝对值PF1=a+ex绝对值PF2=a-e
如图:连接OQ,PF1,∵点Q为线段PF2的中点,∴OQ∥PF1,OQ=12PF1,∴PF1=2OQ=2b,由椭圆定义,PF1+PF2=2a,∴PF2=2a-2b∵线段PF2与圆x2+y2=b2相切于
(一)可设椭圆的方程为(x²/a²)+(y²/b²)=1.(a>b>0)由题设可知,右焦点F在原点和右顶点的中间,∴a=2c,再由椭圆的定义知,2a=4.∴a=
焦距是2那么也就是2c-2,c=1分类讨论当椭圆立起来时b^2=5a^2=b^2+c^2=6x^2/5+y^2/6=1当椭圆横过来时a^2=5b^2=a^2-c^2=4x^2/5+y^2/4=1不明白
1、设P为椭圆上在x轴上方的点,F1坐标为(c,0)PF1⊥OX轴,则P点坐标为(c,b²/a)kOP=b²/ac=kAB=b/a则b=ca²=b²+c
余弦定理:F1F2^2=F1P^2+F2P^2-2F1P*F2Pcos∠F1PF2F1F2=2c而F1P+F2P=2a,所以F1P^2+F2P^2=(F1P+F2P)^2-2F1P*F2P=4a^2-
2a=4,a=2e=c/a=1/2,c=1,b=V(a^2-c^2)=V3方程为x^2/4+y^2/3=1
长.短半轴AB半焦距C标准方程也然后这个三角形斜边为2C设两直角边分别为MN有M+N=2A又因为那是RT三角形所以吗M^2+N^2=4C^2又因为C^2=A^-B^所以可得M*N其值一半为面积B^2
如图所示,下面证明椭圆的短轴的一个端点是到椭圆的中心距离最短的点.设椭圆上任意一点P(x0,y0),则x20a2+y20b2=1,可得y20=b2(1−x20a2).∴|OP|2=x20+y20=x2