如图已知矩形面积为8a,两邻边之比为3:4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:48:13
如图已知矩形面积为8a,两邻边之比为3:4
如图,已知矩形ABCD的周长为20,四个正方形的面积为100,求矩形ABCD面积

设矩形的长为a宽为b2(a+b)=202(a^2+b^2)=100a+b=10a^2+b^2=50(a+b)^2=100a^2+b^2+2ab=10050+2ab=100ab=25矩形ABCD面积25

如图,已知ABCD,做一个矩形,使得A,B,C,D四点分别在矩形的四条边上,且矩形的面积为菱形ABCD面积的2倍

HG//AC//EF,HE//DB//GFHAOD是一个矩形,因此三角形AHD面积=AOD面积同理可得OCD面积=CGD面积,AOB面积=ABE面积,BOC面积=BCF面积因此矩形EFGE面积是菱形A

如图,矩形ABCD被分成六个大小不一的正方形,已知中间一个小正方形面积为4,其他正方形的边长分别为a、b、c、d.求矩形

∵中间一个小正方形面积为4,其他正方形的边长分别为a、b、c、d.∴中间一个小正方形边长为:2,∴b=a+2,c=b+2=a+2+2=a+4,d=c+2=a+6,∴a+6+2=2a,解得:a=8,∴矩

如图,矩形ABCD被分成六个大小不一的正方形,已知中间一个小正方形的面积为4,其他正方形的边长分别为a,

中间面积为a正方形边长为X,又AB=CD,∴2X+10=3X+2X=8,X+6=14d-中间=14×14-4=192.即最大正方形与最小正方形的面积之差=196-4=192.

如图,已知矩形ABCD的周长为16,四个正方形的面积和为68,求矩形ABCD的面积.

设矩形的长AB为x,则宽AD为(8-x),由题意,得2x2+2(8-x)2=68,2x2+2(64-16x+x2)=68,2x2+128-32x+2x2=68,∴4x2-32x=-60,∴x2-8x=

如图:已知菱形ABCD,作一个矩形,使得A,B,C,D四点分别在矩形的四条边上,且矩形的面积为菱形ABCD面...

只要过四个顶点分别作两条对角线的平行线,此四条直线围成的四边形即为所求的矩形.

如图,让两个长为12,宽为8的矩形重叠,已知图中线段AB长为7,则两个矩形重叠的阴影部分面积为______.

如图所示,CD=8,CE=12,AE=8-7=1Rt△ACE中,AC=AE2+CE2=145Rt△ADC中,AD=AC2−CD2=9阴影部分的面积=S△AEC+S△ACD=CD×AD÷2+AE×CE÷

已知长宽分别为a和1(a>1)的矩形,如图22所示截得四边形ABCD,求四边形面积S的最大值

0<S<1×a=a  没有“最大值”,可以很接近a﹙红色图﹚,但是不能达到a.

如图,已知矩形ABCD的面积为48,以此矩形的对称轴为坐标轴建立直角坐标系

因为一次函数y=mx+2(m<0)的图象与x轴y轴分别交点于点E、F,所以F(0,2)设:E(a,0)S(AFE)=(1/8)xS(ABCD)=6(1)E点到直线的距离为:h=((1/4)Xa+2)/

如图,已知矩形长和宽分别为12cm,8cm,求图中阴影部分的面积

阴影(1)=8x8π/4=16π阴影(2)=4x4xπ/4=4π所以阴影面积=阴影(1)+阴影(2)=16π+4π=20π(平方厘米)

已知矩形ABCD对角线长度为x,两个对角线夹角为角a.求矩形面积.

已知矩形ABCD对角线长度为x,两个对角线夹角为角a.求矩形面积S?S=x^2*SIN(a)

如图,已知矩形ABCD的周长为20,四个正方形的面积和为100,求矩形ABCD的面积...

你好正方形的面积和=2AD²+2AB²=100AD²+AB²=50矩形的周正方形的面积和长为20,则AD+AB=10两边平方得AD²+AB²

如图,在矩形ABCD中CE⊥BD,E为垂足,连接AE,已知AB=a,CE=1,求△AED的面积

因为CE=1,CD=AB=a由勾股定理得CE^2+DE^2=CD^2所以DE=√(a^2-1)而点A到BD的距离=CE=1所以S△AED=1/2*DE*CE=√(a^2-1)/2

如图,在矩形ABCD中CE⊥BD,E为垂足,连接AE,已知AB=a,BC=1,求△AED的面积

过点E作EF⊥AB,交AB于F∵矩形ABCD,AB=A,BC=1∴AD=BC=1,CD=AB=a∴BD=√(AD²+AB²)=√(1+a²)∵CE⊥BD∴BD*CE/2=

如图,已知菱形ABCD,画一个矩形,使得A,B,C,D四个点分别在矩形的四条边上,且矩形的面积为菱形ABCD面积的2倍.

1、连接BD,分别过A、C作MN∥BD,PQ∥BD,2、连接AC,过B作EF∥AC,与MN、PQ分别相交于E、F,过D作GH∥AC,分别与MN、PQ相交于G、H,则四边形EFHG为所求的矩形.